摘要:
Representative embodiments provide a liquid or gel separator utilized to separate and space apart first and second conductors or electrodes of an energy storage device, such as a battery or a supercapacitor. A representative liquid or gel separator comprises a plurality of particles, typically having a size (in any dimension) between about 0.5 to about 50 microns; a first, ionic liquid electrolyte; and a polymer. In another representative embodiment, the plurality of particles comprise diatoms, diatomaceous frustules, and/or diatomaceous fragments or remains. Another representative embodiment further comprises a second electrolyte different from the first electrolyte; the plurality of particles are comprised of silicate glass; the first and second electrolytes comprise zinc tetrafluoroborate salt in 1-ethyl-3-methylimidalzolium tetrafluoroborate ionic liquid; and the polymer comprises polyvinyl alcohol (“PVA”) or polyvinylidene fluoride (“PVFD”). Additional components, such as additional electrolytes and solvents, may also be included.
摘要:
Representative embodiments provide a liquid or gel separator utilized to separate and space apart first and second conductors or electrodes of an energy storage device, such as a battery or a capacitor. A representative liquid or gel separator comprises a plurality of particles selected from the group consisting of: diatoms, diatomaceous frustules, diatomaceous fragments, diatomaceous remains, and mixtures thereof; a first, ionic liquid electrolyte; and a polymer or, in the printable composition, a polymer or a polymeric precursor. Another representative embodiment further comprises a second electrolyte different from the first electrolyte; the first and second electrolytes comprise zinc tetrafluoroborate salt in 1-ethyl-3-methylimidalzolium tetrafluoroborate ionic liquid; and the polymer comprises polyvinyl alcohol (“PVA”) or polyvinylidene fluoride (“PVFD”). Additional components, such as additional electrolytes and solvents, may also be included.
摘要:
Representative embodiments provide a composition for printing a liquid or gel separator utilized to separate and space apart first and second conductors or electrodes of an energy storage device, such as a battery or a supercapacitor. A representative composition comprises a plurality of particles, typically having a size (in any dimension) between about 0.5 to about 50 microns; a first, ionic liquid electrolyte; and a polymer or polymeric precursor. In another representative embodiment, the plurality of particles comprise diatoms, diatomaceous frustules, and/or diatomaceous fragments or remains. Another representative embodiment further comprises a second electrolyte different from the first electrolyte; the plurality of particles are comprised of silicate glass; the first and second electrolytes comprise zinc tetrafluoroborate salt in 1-ethyl-3-methylimidazolium tetrafluoroborate ionic liquid; and the polymer comprises polyvinyl alcohol (“PVA”) or polyvinylidene fluoride (“PVFD”). Additional components, such as additional electrolytes and solvents, may also be included.
摘要:
A representative printable composition comprises a liquid or gel suspension of a plurality of substantially spherical semiconductor particles; and a first solvent comprising a polyol or mixtures thereof, such as glycerin; and a second solvent different from the first solvent, the second solvent comprising a carboxylic or dicarboxylic acid or mixtures thereof, such as glutaric acid. The composition may further comprise a third solvent such as tetramethylurea, butanol, or isopropanol. In various embodiments, the plurality of substantially spherical semiconductor particles have a size in any dimension between about 5 nm and about 100μ. A representative composition can be printed and utilized to produce diodes, such as photovoltaic diodes or light emitting diodes.
摘要:
Multilayer carbon nanotube capacitors, and methods and printable compositions for manufacturing multilayer carbon nanotubes (CNTs) are disclosed. A first capacitor embodiment comprises: a first conductor; a plurality of fixed CNTs in an ionic liquid, each fixed CNT comprising a magnetic catalyst nanoparticle coupled to a carbon nanotube and further coupled to the first conductor; and a first plurality of free CNTs dispersed and moveable in the ionic liquid. Another capacitor embodiment comprises: a first conductor; a conductive nanomesh coupled to the first conductor; a first plurality of fixed CNTs in an ionic liquid and further coupled to the conductive nanomesh; and a plurality of free CNTs dispersed and moveable in the ionic liquid. Various methods of printing the CNTs and other structures, and methods of aligning and moving the CNTs using applied electric and magnetic fields, are also disclosed.
摘要:
A representative printable composition comprises a liquid or gel suspension of a plurality of metallic particles; a plurality of semiconductor particles; and a first solvent. The pluralities of particles may also be comprised of an alloy of a metal and a semiconductor. The composition may further comprise a second solvent different from the first solvent. In a representative embodiment, the first solvent comprises a polyol or mixtures thereof, such as glycerin, and the second solvent comprises a carboxylic or dicarboxylic acid or mixtures thereof, such as glutaric acid. In various embodiments, the metallic particles and the semiconductor particles are nanoparticles between about 5 nm to about 1.5 microns in any dimension. A representative metallic and semiconductor particle ink can be printed and annealed to produce a conductor.
摘要:
A representative printable composition comprises a liquid or gel suspension of a plurality of conductive particles; a first solvent comprising a polyol or mixtures thereof, such as glycerin, and a second solvent comprising a carboxylic or dicarboxylic acid or mixtures thereof, such as glutaric acid. In various embodiments, the conductive particles are comprised of a metal, a semiconductor, an alloy of a metal and a semiconductor, or mixtures thereof, and may have sizes between about 5 nm to about 1.5 microns in any dimension. A representative conductive particle ink can be printed and annealed to produce a conductor.
摘要:
Multilayer carbon nanotube capacitors, and methods and printable compositions for manufacturing multilayer carbon nanotubes (CNTs) are disclosed. A first capacitor embodiment comprises: a first conductor; a plurality of fixed CNTs in an ionic liquid, each fixed CNT comprising a magnetic catalyst nanoparticle coupled to a carbon nanotube and further coupled to the first conductor; and a first plurality of free CNTs dispersed and moveable in the ionic liquid. Another capacitor embodiment comprises: a first conductor; a conductive nanomesh coupled to the first conductor; a first plurality of fixed CNTs in an ionic liquid and further coupled to the conductive nanomesh; and a plurality of free CNTs dispersed and moveable in the ionic liquid. Various methods of printing the CNTs and other structures, and methods of aligning and moving the CNTs using applied electric and magnetic fields, are also disclosed.