Abstract:
This invention provides a high volume manufacturing compatible process tool and method for integrating deposition of carbon nanotubes into device fabrication. A linear process tool for growing carbon nanotubes comprises a linear conveyor for moving a substrate through the linear process tool and a micro-plasma process unit including a plurality of micro-plasma spray guns arranged in an array, the micro-plasma process unit being positioned above the linear conveyor and configured to deposit material on the surface of the substrate as the substrate passes under the micro-plasma process unit on the linear conveyor. The micro-plasma process unit may include a first array of micro-plasma spray guns for depositing a catalyst material and a second array of micro-plasma spray guns for depositing the carbon nanotubes. A method of depositing carbon nanotubes on a substrate comprises: supplying a first precursor for a catalyst material to a first array of micro-plasma spray guns; creating a first plasma using the first array of micro-plasma spray guns and the first precursor; moving the substrate through the first plasma; activating the catalyst material; supplying a second precursor for the carbon nanotubes to a second array of micro-plasma spray guns; creating a second plasma using the second array of micro-plasma spray guns and the second precursor; moving the substrate through the second plasma.
Abstract:
An integrated circuit with BEOL interconnects may comprise: a substrate including a semiconductor device; a first layer of dielectric over the surface of the substrate, the first layer of dielectric including a filled via for making electrical contact to the semiconductor device; and a second layer of dielectric on the first layer of dielectric, the second layer of dielectric including a trench running perpendicular to the longitudinal axis of the filled via, the trench being filled with an interconnect line, the interconnect line comprising cross-linked carbon nanotubes and being physically and electrically connected to the filled via. Cross-linked CNTs are grown on catalyst particles on the bottom of the trench using growth conditions including a partial pressure of precursor gas greater than the transition partial pressure at which carbon nanotube growth transitions from a parallel carbon nanotube growth mode to a cross-linked carbon nanotube growth mode.
Abstract:
An integrated circuit with BEOL interconnects may comprise: a substrate including a semiconductor device; a first layer of dielectric over the surface of the substrate, the first layer of dielectric including a filled via for making electrical contact to the semiconductor device; and a second layer of dielectric on the first layer of dielectric, the second layer of dielectric including a trench running perpendicular to the longitudinal axis of the filled via, the trench being filled with an interconnect line, the interconnect line comprising cross-linked carbon nanotubes and being physically and electrically connected to the filled via. Cross-linked CNTs are grown on catalyst particles on the bottom of the trench using growth conditions including a partial pressure of precursor gas greater than the transition partial pressure at which carbon nanotube growth transitions from a parallel carbon nanotube growth mode to a cross-linked carbon nanotube growth mode.
Abstract:
Apparatus for supporting the wires in a hot wire chemical vapor deposition (HWCVD) system are provided herein. In some embodiments, a terminal connector for a hot wire chemical vapor deposition (HWCVD) system may include a base; a wire clamp moveably disposed with relation to the base along an axis; a reflector shield extending from the wire clamp in a first direction along the axis; and a tensioner coupled to the base and wire clamp to bias the wire clamp in a second direction opposite the first direction.
Abstract:
Apparatus for supporting the wires in a hot wire chemical vapor deposition (HWCVD) system are provided herein. In some embodiments, a terminal connector for a hot wire chemical vapor deposition (HWCVD) system may include a base; a wire clamp moveably disposed with relation to the base along an axis; a reflector shield extending from the wire clamp in a first direction along the axis; and a tensioner coupled to the base and wire clamp to bias the wire clamp in a second direction opposite the first direction.