摘要:
The present invention generally provides a method and apparatus for forming a doped layer on a substrate to improve uniformity of subsequent deposition thereover. Preferably, the layer is deposited by a sputtering process, such as physical vapor deposition (PVD) or Ionized Metal Plasma (IMP) PVD, using a doped target of conductive material. Preferably, the conductive material, such as copper, is alloyed with a dopant, such as phosphorus, boron, indium, tin, beryllium, or combinations thereof, to improve deposition uniformity of the doped layer over the substrate surface and to reduce oxidation of the conductive material. It is believed that the addition of a dopant, such as phosphorus, stabilizes the conductive material surface, such as a copper surface, and lessens the surface diffusivity of the conductive material. The overall surface diffusivity of copper is reduced such that the tendency to agglomerate or to become discontinuous is reduced, thereby allowing the deposition of a smoother conductive film and thereby reducing localized agglomeration of the conductive material. The smoother film is highly desirable for subsequent deposition processes. A conductive material, such as copper, can be deposited on the deposited doped layer by a variety of processes including PVD, chemical vapor deposition (CVD), electroplating, electroless deposition and other deposition processes.
摘要:
Improved targets for use in DC_magnetron sputtering of aluminum or like metals are disclosed for forming metallization films having low defect densities. Methods for manufacturing and using such targets are also disclosed. Conductivity anomalies such as those composed of metal oxide inclusions can induce arcing between the target surface and the plasma. The arcing can lead to production of excessive deposition material in the form of splats or blobs. Reducing the content of conductivity anomalies and strengthening the to-be-deposited material is seen to reduce production of such splats or blobs. Other splat limiting steps include smooth finishing of the target surface and low-stress ramp up of the plasma.
摘要:
A copper sputtering target is provided for producing copper films having reduced in-film defect densities. In addition to reducing dielectric inclusion content of the copper target material, the hardness of the copper target is maintained within a range greater than 45 Rockwell. Within this range defect generation from arc-induced mechanical failure is reduced. Preferably hardness is achieved by limiting grain size to less than 50 microns, and most preferably to less than 25 microns. The surface roughness preferably is limited to less than 20 micro inches, or more preferably, less than 5 micro inches to reduce defect generation from field-enhanced emission. This grain size range preferably is achieved by limiting the purity level of the copper target material to a level less than 99.9999%, preferably within a range between 99.995% to 99.9999%, while reducing particular impurity levels.
摘要:
Improved targets for use in DC.sub.-- magnetron sputtering of aluminum or like metals are disclosed for forming metallization films having low defect densities. Methods for manufacturing and using such targets are also disclosed. Conductivity anomalies such as those composed of metal oxide inclusions can induce arcing between the target surface and the plasma. The arcing can lead to production of excessive deposition material in the form of splats or blobs. Reducing the content of conductivity anomalies and strengthening the to-be-deposited material is seen to reduce production of such splats or blobs. Other splat limiting steps include smooth finishing of the target surface and low-stress ramp up of the plasma.
摘要:
Methods and apparatus for removing oxide from a surface, the surface comprising at least one of silicon and germanium, are provided. The method and apparatus are particularly suitable for removing native oxide from a metal silicide layer of a contact structure. The method and apparatus advantageously integrate both the etch stop layer etching process and the native oxide removal process in a single chamber, thereby eliminating native oxide growth or other contaminates redeposit during the substrate transfer processes. Furthermore, the method and the apparatus also provides the improved three-step chemical reaction process to efficiently remove native oxide from the metal silicide layer without adversely altering the geometry of the contact structure and the critical dimension of the trenches or vias formed in the contact structure.
摘要:
The present invention provides a regeneration shield 22 for a vacuum system, typically used in the processing of integrated circuits. The regeneration shield protects fragile arrays 13, having a dislocatable material 16, such as charcoal, in a high vacuum pump 4 from volatile regeneration gases, which impinge the fragile material on the array and dislocate that material to cause pumping inefficiencies and scrap. The shield may be planar, concave, or convex and may have sides. The shield may also have inwardly and outwardly extending flanges.
摘要:
The invention generally provides an apparatus that reduces backside sputtering of the substrate in a pre-clean chamber and other etch chambers. The invention also provides an apparatus that reduces flaking of material from the film formed on the surfaces of the process kit and extends the specified lifetime of a process kit. One aspect of the invention provides an apparatus for supporting a substrate, comprising a support pedestal contacting a central portion of the substrate and an insulator surrounding the support pedestal, the insulator having a beveled portion extending from a circumferential edge of the substrate.
摘要:
An integrated circuit with BEOL interconnects may comprise: a substrate including a semiconductor device; a first layer of dielectric over the surface of the substrate, the first layer of dielectric including a filled via for making electrical contact to the semiconductor device; and a second layer of dielectric on the first layer of dielectric, the second layer of dielectric including a trench running perpendicular to the longitudinal axis of the filled via, the trench being filled with an interconnect line, the interconnect line comprising cross-linked carbon nanotubes and being physically and electrically connected to the filled via. Cross-linked CNTs are grown on catalyst particles on the bottom of the trench using growth conditions including a partial pressure of precursor gas greater than the transition partial pressure at which carbon nanotube growth transitions from a parallel carbon nanotube growth mode to a cross-linked carbon nanotube growth mode.
摘要:
An integrated circuit with BEOL interconnects may comprise: a substrate including a semiconductor device; a first layer of dielectric over the surface of the substrate, the first layer of dielectric including a filled via for making electrical contact to the semiconductor device; and a second layer of dielectric on the first layer of dielectric, the second layer of dielectric including a trench running perpendicular to the longitudinal axis of the filled via, the trench being filled with an interconnect line, the interconnect line comprising cross-linked carbon nanotubes and being physically and electrically connected to the filled via. Cross-linked CNTs are grown on catalyst particles on the bottom of the trench using growth conditions including a partial pressure of precursor gas greater than the transition partial pressure at which carbon nanotube growth transitions from a parallel carbon nanotube growth mode to a cross-linked carbon nanotube growth mode.
摘要:
The present invention provides a method and apparatus for forming a copper layer on a substrate, preferably using a sputtering process. The sputtering process involves bombarding a conductive member of enhanced hardness with ions to dislodge the copper from the conductive member. The hardness of the target may be enhanced by alloying the copper conductive member with another material and/or mechanically working the material of the conductive member during its manufacturing process in order to improve conductive member and film qualities. The copper may be alloyed with magnesium, zinc, aluminum, iron, nickel, silicon and any combination thereof.