Abstract:
A gas lighter with safety mechanism comprising an inner frame mounted on top of a fuel reservoir and provided with a valve for releasing fuel contained in the fuel reservoir; an outer frame mounted on top of the inner frame and having two supports each of which is provided with a L-shaped supporting hole including a vertical section and a horizontal section; a lever sandwiched between the two supports and pivotable with respect to the outer frame to actuate the valve; a flint disposed between the two supports; a friction wheel rotatably sleeved on a shaft between the two supports, the shaft are movably supported in the supporting holes, the friction wheel is separate from the flint when the shaft is moved to the vertical sections while contacts the flint to enable to generate sparks by rotating the friction wheel when the shaft is moved to the horizontal sections.
Abstract:
Simultaneous determination of general corrosion and localized corrosion rate measurements is achieved with polarization applied by the electrodes themselves rather than externally applied polarization. Two or more working electrodes may be galvanically coupled. A localized pitting corrosion event on one of the electrodes will lead to a potential transient. The area within the potential transient is measured with the baseline being the initial starting potential. This gives localized corrosion as a function of time. The relationship Rp=ΔV/ΔI is calculated, where Rp is the polarization resistance of the working electrodes and is a measure of generalized corrosion rate.
Abstract:
A gas lighter with safety mechanism comprising an inner frame mounted on top of a fuel reservoir and provided with a valve for releasing fuel contained in the fuel reservoir; an outer frame mounted on top of the inner frame and having two supports each of which is provided with a L-shaped supporting hole including a vertical section and a horizontal section; a lever sandwiched between the two supports and pivotable with respect to the outer frame to actuate the valve; a flint disposed between the two supports; a friction wheel rotatably sleeved on a shaft between the two supports, the shaft are movably supported in the supporting holes, the friction wheel is separate from the flint when the shaft is moved to the vertical sections while contacts the flint to enable to generate sparks by rotating the friction wheel when the shaft is moved to the horizontal sections.
Abstract:
The invention provides an electrochemical noise method, apparatus and system for estimating parameters of interest related to corrosion rates of an electrically conductive article, the method comprising: placing a working electrode, a reference electrode, and a counter electrode in an environment of interest; measuring potential at open circuit between the working electrode and the reference electrode over time; placing the working electrode under a potentiostatic control; measuring current between the working electrode and the counter electrode for a predetermined period of time, the period of time of measurements may be extended to include a transient event; and estimating the corrosion rate.
Abstract:
A bathtub assembly is provided, which includes a bathtub body, a drawable blowing mechanism and a hot air device. The bathtub body has a concave part for containing water, a ventilation pipeline is provided inside the bathtub body, and is spirally arranged around the concave part, and an air inlet of the ventilation pipeline is located on an upper surface of the bathtub body. There are at least two air outlets, one of which is located at a lower part of a side of the bathtub body and used for blowing air to ground and the other of which is located on the upper surface. The drawable blowing mechanism is installed at the air outlet and drawn relative to the ventilation pipeline. The hot-air device is arranged independently of the bathtub body, an air outlet of the hot-air device is communicated with the air inlet of the ventilation pipeline.
Abstract:
A delta modulation method and system is provided for processing signals in a digital communications system. The method quantizes an input signal using a tri-state quantizer into a quantized value selected from a set of three different quantized values including a low value, a middle value, and a high value. The selection of the quantized value is based on a comparison between the input signal and a predicted signal of a corresponding sampling period. The method generates from the quantized value an output signal representative of the input signal, determines a predicted signal of the next sampling period, and then feeds the predicted signal of next sampling period back to the tri-state quantizer.
Abstract:
An electrochemical noise method, apparatus and system calculates parameters of interest related to corrosion rates of an electrically conductive article. The method involves placing a test electrode, a reference electrode, and an auxiliary electrode in an environment of interest; placing the test electrode under potentiostatic control regime for a potential scan; measuring the relationship of current v. potential (polarization resistance, Rp) of the test electrode relative to the reference electrode during a first period; switching from potentiostatic control to the open circuit potential (OCP) of the test electrode; monitoring the OCP of the test electrode during a second period; determining ΔI from the relationship Rp=ΔV/ΔI, where ΔV is measured over a second period of time; and calculating the localized corrosion from the measured potential and current data.
Abstract:
A delta modulation method and system is provided for processing signals in a digital communications system. The method quantizes an input signal using a tri-state quantizer into a quantized value selected from a set of three different quantized values including a low value, a middle value, and a high value. The selection of the quantized value is based on a comparison between the input signal and a predicted signal of a corresponding sampling period. The method generates from the quantized value an output signal representative of the input signal, determines a predicted signal of the next sampling period, and then feeds the predicted signal of next sampling period back to the tri-state quantizer.