Abstract:
An imaging system for effecting electrostatic printing of an image, wherein the imaging system includes an electrostatic printing engine operable in a novel fashion upon a copy substrate, for imaging and development of an electrostatic latent image representative of the image, and subsequently transfers the developed image to the copy substrate. A quantity of low solids content liquid developing material is subject to compression in a process nip such that the concentration of marking particles therein increases and the concentration of carrier fluid decreases. A toner cake layer is thereby formed in the process nip, and is used for development of the electrostatic latent image in a development zone situated in the process nip.
Abstract:
The efficient contact transfer of liquid toner images is obtained by using an absorbent coating material over an image bearing member. The absorbent coating material absorbs carrier fluid from a developed image. By absorbing carrier fluid from the developed image the internal cohesiveness of the image increases and the adhesion of the image to the next substrate increases.
Abstract:
Imaging system for effecting single pass, multicolor printing of a color image, wherein the imaging system includes a plurality of contact electrostatic printing engines operable in serial fashion upon a copy substrate, wherein each contact electrostatic printing engine images and develops a respective electrostatic latent image representative of a component of the color image, and subsequently transfers the developed component image to the copy substrate as the copy substrate proceeds in a single pass through the imaging system.
Abstract:
An imaging apparatus containing an imaging member with an electrostatic latent image formed thereon, the imaging member containing a surface capable of supporting marking material; an imaging device for generating the electrostatic latent image on the imaging member wherein the electrostatic latent image includes image areas defined by a first charge voltage and nonimage areas defined by a second charge voltage distinguishable from the first charge voltage; a marking material supply apparatus for depositing marking material on the surface of the imaging member to form a marking material layer thereon adjacent the electrostatic latent image on the imaging member; a charging source for selectively delivering charges to the marking material layer in an imagewise manner responsive to the electrostatic latent image on the imaging member to form a secondary latent image in the marking material layer containing image and nonimage areas corresponding to the electrostatic latent image on the imaging member; and a separator member for selectively separating portions of the marking material layer in accordance with the secondary latent image in the marking material layer to create a developed image corresponding to the electrostatic latent image formed on the imaging member, and wherein the marking material is comprised of developer containing an optional liquid, resin, colorant, and a charge acceptance additive of an aluminum complex of the formulas, or mixtures thereof wherein R1 is selected from the group consisting of hydrogen and alkyl, and n represents the number of R1 groups, and wherein the charge acceptance additive captures and retains negative ions or positive ions.
Abstract:
A multicolor image reproduction machine includes a main assembly having an image bearing member, a controller, and a bias source for biasing the image bearing member. It also includes a plurality of color separation toner image forming units each having a photoreceptor including a photoconductive surface forming a toner image separation development nip with the image bearing member. Each imaging unit also includes a toner supply apparatus for applying a layer of toner of a particular color onto the photoconductive surface; a first charging device for uniformly charging the photoconductive surface; an exposure device connected to the controller for image-wise exposing the photoconductive surface and the layer of toner to form therein image areas and background areas of a desired image; and a second charging device connected to the controller for selectively reversing charge in the background areas of the desired image, so as to enable subsequent separation of the background areas from the image areas. The multicolor image reproduction machine further includes a separation development assembly for separating and developing the image areas of the desired image from the layer of toner and onto the image bearing member of the main assembly to form a multicolor toner image.
Abstract:
A printing machine and method for efficiently forming toner images such that a quantity of unused toner applied to a photoreceptor of the machine is significantly diminished are provided. The printing machine and method include a movable photoreceptor having a photoconductive surface for supporting electrostatic charge; a first charging device for selectively charging only scattered portions of the surface of the photoreceptor; a liquid developer material supply and application apparatus for applying a coat of charged toner solids having a single polarity onto each charged selected scattered portion, thereby forming an image area patch of toner; an exposure device for image-wise exposing each charged selected scattered portion to form a first latent image therein; and a contact electrostatic printing (CEP) assembly including a conductive (CEP) roll and a bias source coupled thereto, for applying compressive and tensile forces to the image area centered patches of toner moving through an image processing nip formed by the photoconductive surface of the photoreceptor and the conductive CEP roll, wherein the bias source cooperates with a charge pattern of the image area centered patches of toner to generate image-wise electric fields within the image processing nip, and the image-wise electric fields together with the compressive and tensile forces, enable easy separation of background area toner solids from image area toner solids of the image area centered patches of toner, and onto the CEP roll; thereby resulting in an efficiently produced, quality toner image with significantly reduced non-development marking material generated and requiring removal.
Abstract:
A method and device for sensing spatial variations and/or temperature variations in the locality of a fiber optic cable 1 is disclosed, wherein a broadband light source 47 is used to shine incident light onto a series of fiber Bragg gratings contained within zones A, B and C. Each zone contains a plurality of fiber Bragg gratings, the plurality of fiber Bragg gratings in any one zone having a substantially identical grating period, and the fiber Bragg gratings in the respective zones having different grating periods. The reflected light from each fiber Bragg grating is returned back down the fiber optic cable 1 and redirected via a 2×1 coupler 51 to a wavelength detection system 53 and a personal computer 63. The combination of wavelength detection system 53 and personal computer 63 allow analysis of the reflected light patterns, as well as providing a user interface which enables detection of the occurrence of a spatial and/or a temperature variation. The location of the said variation along the fiber optic cable 1 is advantageously detectable in terms of the particular zone A, B or C in which the said variation has been sensed.
Abstract:
A multicolor image-on-image reproduction machine includes a main assembly, a controller, a movable image bearing member having a path of movement, and a plurality of air breakdown charge and development (ABCD) imaging units mounted along the path of movement for forming color separation toner images. Each (ABCD) imaging unit includes a photoreceptor having a photoconductive surface forming a toner image separation development nip with the movable image bearing member; a toner supply apparatus for applying a layer of toner onto the photoconductive surface; a charging device for uniformly charging the photoconductive surface through the layer of toner; and an exposure device connected to the controller for image-wise exposing of the photoconductive surface and the layer of toner to form therein image areas and background areas of a desired color separation image. The multicolor image-on-image reproduction machine then includes a bias source for biasing the image bearing member at the toner image separation development nip to a potential sufficient to cause air breakdown selective recharging of the background areas of the layer of toner, thereby enabling the image areas of the layer of toner to be separated and developed as a color separation toner image onto the movable image bearing member, and the background areas thereof to remain on the photoreceptor.
Abstract:
A process which comprises the generation of an image on an imaging member, developing the image with a liquid developer, and transferring the image to a substrate, and which substrate is coated with an acrylic, a nylon, a vinyl polymer, a wax, or a paraffin component.