Abstract:
Exemplary embodiments provide charging systems and methods for effectively delivering charges onto a receptor. The charging system can include a low velocity gas stream, an emitter assembly for providing cathode-to-anode field bias to generate charges from the low velocity gas stream, and an emitter-to-receptor (e.g., photoreceptor) electric bias to enhance the charge delivery to the receptor. The disclosed charging systems and methods can be used to achieve an optimal charging performance at a low projected cost for any suitable receptor that needs to be charged. Exemplary receptors can include a photoreceptor (PR) such as a belt PR or a drum PR, a toner layer, a sheet of media on which toner can be deposited, or a transfer belt in an electrophotographic printing machine.
Abstract:
Disclosed are anti-counterfeiting methods which use a fiduciary marker encoded with the location of a hidden security feature. Documents produced by the methods, and methods for verifying authenticity of documents produced by the methods, are also disclosed.
Abstract:
In accordance with the invention, there are field emission light emitting devices and methods of making them. The field emission light emitting device can include a plurality of spacers, each connecting a substantially transparent substrate to a backing substrate. The device can also include a plurality of pixels, wherein each of the plurality of pixels can include one or more first electrodes disposed over the substantially transparent substrate, a light emitting layer disposed over each of the one or more first electrodes, and one or more second electrodes disposed over the backing substrate, wherein the one or more second electrodes and the one or more first electrode are disposed at a predetermined gap in a low pressure region. Each of the plurality of pixels can further include one or more nanocylinder electron emitter arrays disposed over each of the one or more second electrodes.
Abstract:
In accordance with the invention, there are electron emitters, charging devices, and methods of forming them. An electron emitter array can include a plurality of nanostructures, each of the plurality of nanostructures can include a first end and a second end, wherein the first end can be connected to a first electrode and the second end can be positioned to emit electrons, and wherein each of the plurality of nanostructures can be formed of one or more of oxidation resistant metals, doped metals, metal alloys, metal oxides, doped metal oxides, and ceramics. The electron emitter array can also include a second electrode in close proximity to the first electrode, wherein one or more of the plurality of nanostructures can emit electrons in a gas upon application of an electric field between the first electrode and the second electrode.
Abstract:
In accordance with the invention, there are field emission light emitting devices and methods of making them. The field emission light emitting device can include a plurality of spacers, each connecting a substantially transparent substrate to a backing substrate. The device can also include a plurality of pixels, wherein each of the plurality of pixels can include one or more first electrodes disposed over the substantially transparent substrate, a light emitting layer disposed over each of the one or more first electrodes, and one or more second electrodes disposed over the backing substrate, wherein the one or more second electrodes and the one or more first electrode are disposed at a predetermined gap in a low pressure region. Each of the plurality of pixels can further include one or more nanocylinder electron emitter arrays disposed over each of the one or more second electrodes.
Abstract:
In accordance with the invention, there are nanoscale electron emitters, field emission light emitting devices, and methods of forming them. The nanoscale electron emitter can include a first electrode electrically connected to a first power supply and a second electrode electrically connected to a second power supply. The nanoscale electron emitter can also include a nanocylinder electron emitter array disposed over the second electrode, the nanocylinder electron emitter array having a plurality of nanocylinder electron emitters disposed in a dielectric matrix, wherein each of the plurality of nanocylinder electron emitters can include a first end connected to the second electrode and a second end positioned to emit electrons, the first end being opposite to the second end.
Abstract:
An electrophoretic ink includes fluid having either (a) at least two sets of differently colored particles with the fluid been a substantially clear fluid, or (b) at least one set of colored particles with the fluid been a differently colored fluid than the colored particles, wherein at least one set of colored particles includes at least one electrophoretic particle having a core-shell structure. The at least one electrophoretic particle includes a shell and a core located within the shell, wherein the core includes a colorant and a fluorescent compound. An electric field may be applied adjacently to the fluid of the ink, and the at least one set of colored particles having the core-shell structure is movable within the fluid of the ink by the electric field.
Abstract:
Methods form a multi-color electrophoretic display. The methods include providing microcapsules, wherein the microcapsules have an electrostatic charge, and wherein the microcapsules comprise, a shell that is transparent and a display medium within the shell, wherein the display medium is comprised of either (a) at least two sets of differently colored particles in a substantially clear fluid, or (b) at least one set of colored particles in a differently colored fluid. The methods include transferring the microcapsules to a substrate, wherein the electrostatic charge of the microcapsules attracts the microcapsules to the substrate, wherein a display layer of microcapsules is formed on the substrate. The methods include positioning a conductive substrate adjacent to the substrate, wherein the substrate is located between the display layer and the conductive substrate. In use, the conductive substrate applies an electric field to the display layer, and wherein the sets of particles within each microcapsule in the display layer are moveable within the microcapsule by the electric field.
Abstract:
An electrophoretic ink includes fluid having either (a) at least two sets of differently colored particles with the fluid been a substantially clear fluid, or (b) at least one set of colored particles with the fluid been a differently colored fluid than the colored particles, wherein at least one set of colored particles includes at least one electrophoretic particle having a core-shell structure. The at least one electrophoretic particle includes a shell and a core located within the shell, wherein the core includes a colorant and a fluorescent compound. An electric field may be applied adjacently to the fluid of the ink, and the at least one set of colored particles having the core-shell structure is movable within the fluid of the ink by the electric field.
Abstract:
An offset printing apparatus having a coated imaging drum for use with phase-change inks, wherein the imaging drum including a metal substrate, a conformable intermediate layer, and outer coating having an alkyd thermoset, and a heating member associated with the offset printing apparatus.