Abstract:
An optical system, in particular a microlithographic projection printing installation, has in particular a slot-shaped image field or rotationally non-symmetrical illumination. The system comprises a light source (30) as well as at least one optical element, in particular a lens or a mirror. In the region of at least one surface acted upon by the radiation (1) of the light source (30) the optical element is substantially symmetrical in relation to an axis of rotational symmetry (5). The optical element or its housing (6) is rotatably connected to a frame (7) by at least one bearing (8, 9, 10). An actuator (18) sets the optical element (25) or its housing (6) in rotation about the axis of rotational symmetry (5). The actuation cooperates with a control device (23). The latter activates the actuator (18) for rotation of the optical element at least temporarily during the period, when the optical element is exposed to lumination. In such a manner rotationally non-symmetrical image defects are compensated.
Abstract:
An optical arrangement, in particular a microlithographic projection printing installation, has in particular a slot-shaped image field or rotationally non-symmetrical illumination. A refractive optical element, e.g. a lens (2), is heated by the rotationally non-symmetrical radiated impingement (3) of a light source. At least one electric heating element is coupled to the optical element. Said heating element comprises a resistance heating coating carried by the optical element. In the region of the surface (3) of the optical element acted upon by the radiation of the light source the resistance heating coating is substantially optically transparent. It comprises a plurality of parallel, electrically mutually insulated coating strips (5 to 10). A heating current source (17 to 19) is additionally part of the heating element. By virtue of the combined heating of the optical element by the radiated impingement (3) and the resistance heating, a correction of imaging defects induced by illumination in the optical element is achieved by means of a symmetrical and/or homogeneous temperature and refractive index distribution.
Abstract:
An optical arrangement, in particular a projection exposure system for microlithography, has, in particular, a slit-shaped image field or a non-rotational-symmetric illumination. As a result, an optical element (101) is exposed in a non-rotational-symmetric manner to the radiation of the light source (110, 111, 112). The optical element (101) has an absorbing coating (104, 105). The absorption of the coating (104, 105) is distributed in such a manner that it is non-rotation-symmetrical in a manner that is at least approximately complementary to the intensity distribution of the exposure to the radiation (107, 108, 109) of the light source (110, 111, 112). As a result of the energy absorbed in the coating (104, 105), an additional heating of the optical element (101) takes place that results in a better non-rotational-symmetric temperature distribution and, consequently, a compensation for light-induced imaging errors.