摘要:
An optical arrangement, in particular a microlithographic projection printing installation, has in particular a slot-shaped image field or rotationally non-symmetrical illumination. A refractive optical element, e.g. a lens (2), is heated by the rotationally non-symmetrical radiated impingement (3) of a light source. At least one electric heating element is coupled to the optical element. Said heating element comprises a resistance heating coating carried by the optical element. In the region of the surface (3) of the optical element acted upon by the radiation of the light source the resistance heating coating is substantially optically transparent. It comprises a plurality of parallel, electrically mutually insulated coating strips (5 to 10). A heating current source (17 to 19) is additionally part of the heating element. By virtue of the combined heating of the optical element by the radiated impingement (3) and the resistance heating, a correction of imaging defects induced by illumination in the optical element is achieved by means of a symmetrical and/or homogeneous temperature and refractive index distribution.
摘要:
An optical arrangement, in particular a projection exposure system for microlithography, has, in particular, a slit-shaped image field or a non-rotational-symmetric illumination. As a result, an optical element (101) is exposed in a non-rotational-symmetric manner to the radiation of the light source (110, 111, 112). The optical element (101) has an absorbing coating (104, 105). The absorption of the coating (104, 105) is distributed in such a manner that it is non-rotation-symmetrical in a manner that is at least approximately complementary to the intensity distribution of the exposure to the radiation (107, 108, 109) of the light source (110, 111, 112). As a result of the energy absorbed in the coating (104, 105), an additional heating of the optical element (101) takes place that results in a better non-rotational-symmetric temperature distribution and, consequently, a compensation for light-induced imaging errors.
摘要:
An optical system, in particular a microlithographic projection printing installation, has in particular a slot-shaped image field or rotationally non-symmetrical illumination. The system comprises a light source (30) as well as at least one optical element, in particular a lens or a mirror. In the region of at least one surface acted upon by the radiation (1) of the light source (30) the optical element is substantially symmetrical in relation to an axis of rotational symmetry (5). The optical element or its housing (6) is rotatably connected to a frame (7) by at least one bearing (8, 9, 10). An actuator (18) sets the optical element (25) or its housing (6) in rotation about the axis of rotational symmetry (5). The actuation cooperates with a control device (23). The latter activates the actuator (18) for rotation of the optical element at least temporarily during the period, when the optical element is exposed to lumination. In such a manner rotationally non-symmetrical image defects are compensated.
摘要:
An optical element (1) of an optical system has at least one chamber (5) that is sealed against atmospheric pressure and is enclosed by boundary surfaces and that has a fluid filling. At least one of the boundary surfaces of the chamber (5) is exposed at least partially to illumination light. It is configured so that a change in the fluid pressure inside the chamber (5) results in a change in non-rotational-symmetric imaging properties of the optical element (1) having n-fold symmetry. For this purpose, a fluid source has a fluid connection to the chamber via a fluid supply line (17). Furthermore, a control device is provided for the pressure in the fluid filling.
摘要:
An optical arrangement, in particular a microlithographic projection printing installation, has in particular a slot-shaped image field or rotationally non-symmetrical illumination. An optical element (5) is therefore acted upon in a rotationally non-symmetrical manner by the radiation of a light source. To temper the optical element (5), a supply apparatus (11, 19 to 23) for gas is used. The latter having at least one supply line (21) and at least one gas directing device (11). The latter is aligned relative to the optical element (5) and controllable in such a way that the gas is directed by the gas directing device (11) towards the optical element (5). The volumetric flow of the exiting gas therefore has a magnitude and spatial distribution (17), which are adapted to the intensity distribution (6) of the radiation. By virtue of such tempering, rotationally non-symmetrical light-induced image defects in the optical element (5) are avoided or compensated.
摘要:
An optical arrangement, in particular a microlithographic projection printing installation, has in particular a slot-shaped image field or rotationally non-symmetrical illumination. An optical element (1) is therefore acted upon in a rotationally non-symmetrical manner by the radiation of the light source. A compensating light supply device (11, 14 to 19) is optically coupled via the peripheral surface (13) of the optical element (1) to the latter. It supplies compensating light (16, 12) to the optical element (1) in such a way that the temperature distribution in the optical element (1), which arises as a result of cumulative heating of the optical element (1) with projection light (2) and compensating light (12), is at least partially homogenized. In said manner image defects induced by the projection light are corrected.
摘要:
An optical system, in particular a projection exposure device for microlithography, with a slit-shaped image field or illumination which is not rotationally symmetrical, has an optical element, in particular, a lens or a mirror which is arranged in a mount (2), and actuators (3) which engage on the optical element (1) at least approximately perpendicularly to the optical axis. The actuators (3) bring about forces and or moments, which are not rotationally symmetrical and which deviate from the radial, on the optical element (1), for the production of bendings which take place substantially without thickness changes.
摘要:
A mount for an optical element in an optical imaging device, in particular in a lens system (4) for semiconductor lithography, has at least one mounting ring (2) which bears the optical element (6). The mounting ring (2) is of at least partially hollow design in cross section.
摘要:
A system includes generation of a query to retrieve, from a first database table, a result set conforming to query parameters for all entries of a second table stored in a volatile memory of a query client, serialization of the second table into the volatile memory, copying of the serialized second table into a second volatile memory of a data server, de-serialization of the serialized second table into the second volatile memory, determination of a plurality of entries of the first database table which are associated with the second table, and determination of the result set from the plurality of entries based on the query parameters.
摘要:
In the case of a mounting apparatus, an optical element having an inner mount and an outer mount, in particular a lens in a projection lens system for semiconductor lithography, the inner mount is connected to the outer mount via three circumferentially distributed articulations. Manipulators, whereby said inner mount is displaceable, act on the articulations. The articulations comprise a mechanism which transforms a radial movement into an axial movement.