摘要:
A method for correcting line width variation occurring during a development process in fabricating a photomask and a recording medium in which the exposure method is recorded is provided, wherein pattern line width variation occurring in a development process with respect to a desirable pattern is estimated, and a corrective exposure is performed using a dose or bias of an electron beam corresponding to the estimated pattern line width variation. Accordingly, pattern line width variation occurring during a development process can be reduced.
摘要:
This disclosure provides a method for manufacturing an optical proximity correction (OPC) mask, the method using an electron beam, and an OPC mask manufactured using the method. In the method, a mask is placed on a holder and a mask pattern for a photolithography process formed on the mask by illuminating the mask with an electron beam. A desired pattern is formed on the mask and an amended pattern is formed in consideration of a Kennel Effect by changing the size of the electron beam in a portion of the desired pattern where the Kennel Effect occurs. With the method, an amended pattern is made by defocusing an electron beam to change the size of the electron beam. Accordingly, an additional large amended pattern file is not required and the CPU memory for an apparatus using this method is not overloaded. This method thereby simplifies the process of manufacturing an OPC mask and complicated amended patterns are easily produced.
摘要:
A mask for use in measuring flare produced by a projection lens of a photolithography system, a method of manufacturing the mask, a method of identifying a flare-affected region on a wafer, and a method for correcting for the flare to produce photoresist patterns of desired line widths are provided. A first photolithographic process is performed to form photoresist patterns on a test wafer using a mask including a light shielding region having a plurality of light transmission patterns and a light transmission region, and the photoresist patterns formed by light passing through the light transmission patterns of the light shielding region are compared to the photoresist patterns formed by light passing through the light transmission region. The amount of flare produced by the projection lens is quantified using the results of the comparison, and thus it is possible to identify a flare-affected region on the wafer. In addition, it is possible to form uniform photoresist patterns on the wafer by determining the open ratio of the flare-affected region and calculating an effective amount of the flare in the flare-affected region from the amount of flare of the lens and the open ratio. More specifically, a mask is produced in which the line widths of mask patterns are configured, i.e., corrected compared to the first mask, taking into consideration the effective amount of the flare.
摘要:
An E-beam mask for use in a lithographic process includes a main pattern of stripes of patterned chrome or tungsten formed on a membrane. The stripes of the main pattern are inspected for defects. Dummy stripes corresponding to a defective stripe of the main pattern are formed on the membrane in spare room outside the region bounded by the main pattern. E-beam exposure processes are then carried out using only the non-defective stripes of the main pattern, and the non-defective dummy stripes instead of a defective stripe of the main pattern once the lithographic process has progressed to the defective stripe of the main pattern. When the lithographic process is being used to manufacture DRAM cells, some of the stripes of the main pattern will have the same chrome or tungsten patterns. As long as all of these similar stripes of the main pattern are not defective, then the E-beam processes can be carried out in a sequence using the non-defective stripes of the main pattern only. However, if all of the similar stripes of the main pattern are determined to be defective, a corresponding dummy stripe is produced on the membrane. In this case, the dummy stripe is used in the lithographic process instead of the similar defective stripes of the main pattern.
摘要:
A mask for use in measuring flare produced by a projection lens of a photolithography system, a method of manufacturing the mask, a method of identifying a flare-affected region on a wafer, and a method for correcting for the flare to produce photoresist patterns of desired line widths are provided. A first photolithographic process is performed to form photoresist patterns on a test wafer using a mask including a light shielding region having a plurality of light transmission patterns and a light transmission region, and the photoresist patterns formed by light passing through the light transmission patterns of the light shielding region are compared to the photoresist patterns formed by light passing through the light transmission region. The amount of flare produced by the projection lens is quantified using the results of the comparison, and thus it is possible to identify a flare-affected region on the wafer. In addition, it is possible to form uniform photoresist patterns on the wafer by determining the open ratio of the flare-affected region and calculating an effective amount of the flare in the flare-affected region from the amount of flare of the lens and the open ratio. More specifically, a mask is produced in which the line widths of mask patterns are configured, i.e., corrected compared to the first mask, taking into consideration the effective amount of the flare.
摘要:
A method for correcting line width variation occurring during a development process in fabricating a photomask and a recording medium in which the exposure method is recorded is provided, wherein pattern line width variation occurring in a development process with respect to a desirable pattern is estimated, and a corrective exposure is performed using a dose or bias of an electron beam corresponding to the estimated pattern line width variation. Accordingly, pattern line width variation occurring during a development process can be reduced.
摘要:
A method of exposing a photomask substrate, provides an exposing method for correcting a loading effect generated when a photomask substrate is dry etched. Accordingly, a variation in line width caused by a loading effect generated due to the non-uniformity of a loading density is reduced by a method of performing correction exposure using a dose corresponding to the loading effect due to a desired pattern which is calculated from a relationship represented as the convolution of a Gaussian distribution and a loading density.
摘要:
A mask for use in measuring flare produced by a projection lens of a photolithography system, a method of manufacturing the mask, a method of identifying a flare-affected region on a wafer, and a method for correcting for the flare to produce photoresist patterns of desired line widths are provided. A first photolithographic process is performed to form photoresist patterns on a test wafer using a mask including a light shielding region having a plurality of light transmission patterns and a light transmission region, and the photoresist patterns formed by light passing through the light transmission patterns of the light shielding region are compared to the photoresist patterns formed by light passing through the light transmission region. The amount of flare produced by the projection lens is quantified using the results of the comparison, and thus it is possible to identify a flare-affected region on the wafer. In addition, it is possible to form uniform photoresist patterns on the wafer by determining the open ratio of the flare-affected region and calculating an effective amount of the flare in the flare-affected region from the amount of flare of the lens and the open ratio. More specifically, a mask is produced in which the line widths of mask patterns are configured, i.e., corrected compared to the first mask, taking into consideration the effective amount of the flare.
摘要:
An exposure method for correcting dimension variations in a pattern resulting from the fogging effect occurring during electron beam exposure and/or the loading effect occurring during dry etching, and a recording medium for recording the same are provided. According to the exposure method, dimension variations can be minimized by calculating the loading effect and/or fogging effect causing dimension variations in a pattern, correcting mask pattern dimension data in advance based on a calculated result and making exposure according to the corrected pattern data. Further, the loading effect and/or fogging effect can be easily calculated because the above-described method can be realized as a computer program and the computer program can be included in an exposure tool, thereby enabling exposure based on a corrected value.
摘要:
The present invention relates to electron beam lithography, and is directed to a method of compensating for pattern dimension variation caused by a re-scattered electron beam when an electron beam resist is exposed to the electron beam. The method of compensating for pattern dimension variation caused by a re-scattered electron beam comprises the steps of: dividing original exposure pattens into square sections; obtaining a dose of supplemental exposure to the re-scattered electron beam; and compensation-exposing the electron beam resist so that the supplemental exposure dose may be the same for all sections. According to the present invention, the pattern dimension variation can be compensated for a re-scattering effect of the electron beam, thereby uniformly forming a fine pattern width of a more highly-integrated circuit.