Abstract:
The disclosure relates to a nitride based semiconductor light emitting device with improved luminescence efficiency by increasing a recombination rate of electrons and holes contributing to luminescence, which results from matching the spatial distribution of electron and hole wave functions. The nitride based semiconductor light emitting device according to the present invention includes an n-type nitride layer, an active layer formed on the n-type nitride layer, and a p-type nitride layer formed on the active layer. At this stage, a strain control layer, and the at least one layer has a larger energy bandgap than a quantum well layer in the active layer. The strain control layer is disposed in an area where the quantum well layer of the active layer is formed. Moreover, an energy bandgap of the strain control layer is less than that of quantum barrier of the active layer.
Abstract:
The disclosure relates to a nitride based semiconductor light emitting device with improved luminescence efficiency by increasing a recombination rate of electrons and holes contributing to luminescence, which results from matching the spatial distribution of electron and hole wave functions. The nitride based semiconductor light emitting device according to the present invention includes an n-type nitride layer, an active layer formed on the n-type nitride layer, and a p-type nitride layer formed on the active layer. At this stage, a strain control layer, and the at least one layer has a larger energy bandgap than a quantum well layer in the active layer. The strain control layer is disposed in an area where the quantum well layer of the active layer is formed. Moreover, an energy bandgap of the strain control layer is less than that of quantum barrier of the active layer.
Abstract:
A transparent display device includes a liquid crystal display (LCD) module and a transparent reflector. The LCD module includes an LCD panel having a liquid crystal layer, a light source providing light to the LCD panel, and a polarizing plate disposed between the light source and the LCD panel to polarize light from the light source. The transparent reflector and the LCD module are spaced apart. The transparent reflector displays the image by reflecting the image provided from the LCD panel. The transparency of the transparent reflector may be controlled, and the transparent reflector may have a curved shape.
Abstract:
A transparent display device includes a liquid crystal display (LCD) module and a transparent reflector. The LCD module includes an LCD panel having a liquid crystal layer, a light source providing light to the LCD panel, and a polarizing plate disposed between the light source and the LCD panel to polarize light from the light source. The transparent reflector and the LCD module are spaced apart. The transparent reflector displays the image by reflecting the image provided from the LCD panel. The transparency of the transparent reflector may be controlled, and the transparent reflector may have a curved shape.