摘要:
A biomedical signal instrumentation amplifier is especially suitable for a circuit processing biomedical signals. In a voltage instrumentation amplifier, a biomedical signal level conversion circuit is added to change an input level, reduce signal distortion and noise, and achieve the performance of low voltage, unisource, low noise, high CMRR, and high PSRR.
摘要:
A method of reducing a MIMO interconnect circuit system in a global Lanczos algorithm is used for estimation of the error margin between the original model and the reduced model of MIMO circuit system. In the algorithm, a projection matrix and then a circuit of declining order system are given. A turbulence system being added to the original system, the transfer function union is completely identical to the reduced system union given in the algorithm. It proves that the union of preceding 2q order of the transfer function of reduced system may be surely corresponding to that of original system. It is deduced from the turbulence system added to the original system that the union of preceding 2q order is equal to that of reduced system. In this invention, the algorithm is the basis of determination of the reduced circuit order in a model reduction algorithm a Krylov subspace.
摘要:
A biomedical signal instrumentation amplifier is especially suitable for a circuit processing biomedical signals. In a voltage instrumentation amplifier, a biomedical signal level conversion circuit is added to change an input level, reduce signal distortion and noise, and achieve the performance of low voltage, unisource, low noise, high CMRR, and high PSRR.
摘要:
Computer time for modeling VLSI interconnection circuits is reduced by using symmetric properties of modified nodal analysis formulation. The modeling uses modified nodal analysis matrices then applies a Krylov subspace matrix to construct a congruence transformation matrix to generate the reduced order model of the VLSI.
摘要:
The adjoint network reduction technique has been shown to reduce 50% of the computational complexity of constructing the congruence transformation matrix. The method was suitable for analyzing the special multi-port driving-point impedance of RLC interconnect circuits. This paper extends this technique for the general circumstances of RLC interconnects. Comparative studies among the conventional methods and the proposed methods are also investigated. Experimental results will demonstrate the accuracy and the efficiency of the proposal method.
摘要:
A method and apparatus for rapidly selecting types of buffers which are inserted in the clock tree for high-speed VLSI design is disclosed. The developed tool can be embedded in the existing clock tree synthesis design flow to ensure minimizing the clock delay and satisfying the clock skew constrains. Given the clock tree netlist, inserted buffers locations information, wires electrical parameters and buffers timing library, the components delay (buffer delay and wire delay) of the clock tree can be calculated first. Then, for each I/O pin, the path delay, clock delay and clock skew can be obtained. Finally using the proposed method, a modified clock tree netlist which satisfying the timing specifications can be constructed.
摘要:
A chemically-modified graphene includes a graphene layer and a plurality of functional groups that are grafted to the graphene layer and each of which is represented by —CO—R—COOH, wherein R is an optionally substituted C1-C5 alkylene group or an optionally substituted C1-C5 alkenylene group. A method for producing a chemically-modified grapheme includes subjecting a cyclic anhydride and graphite to a Friedel-Crafts reaction in the presence of a Lewis acid.
摘要:
The adjoint network reduction technique has been shown to reduce 50% of the computational complexity of constructing the congruence transformation matrix. The method was suitable for analyzing the special multi-port driving-point impedance of RLC interconnect circuits. This technique is extended for the general circumstances of RLC interconnects. Comparative studies among the conventional methods and the proposed methods are also investigated. Experimental results will demonstrate the accuracy and the efficiency of the proposed method.
摘要:
Two-sided projection-based model reductions have become a necessity for efficient interconnect modeling and simulations in VLSI design. In order to choose the order of the reduced system that can really reflect the essential dynamics of the original interconnect, the element of reduced model of the transfer function can be considered as a stopping criteria to terminate the non-symmetric Lanczos iteration process. Furthermore, the approximate transfer function can also be expressed as the original interconnect model with some additive perturbations. The perturbation matrix only involves at most a rank-2 modification at the previous step of the non-symmetric algorithm. The information of stopping criteria will provide a guideline for the order selection scheme used in the Lanczos model-order reduction algorithm.
摘要:
An interconnect model-order reduction method reduces a nano-level semiconductor interconnect network as an original interconnect network by using iteration-based Arnoldi algorithms. The method is performed based on a projection method and has become a necessity for efficient interconnect modeling and simulations. To select an order of the reduced-order model that can efficiently reflect essential dynamics of the original interconnect network, a residual error between transfer functions of the original interconnect network and the reduced interconnect model may be considered as a reference in determining if the iteration process should end, with analytical expressions of the residual error being derived herein. Furthermore, the approximate transfer function of the reduced interconnect model may also be expressed as an addition of the original interconnect model and some additive perturbations. A perturbation matrix is only related with resultant vectors at a previous step of the Arnoldi algorithm. Therefore, the residual error information may be taken as a reference for the order selection scheme used in Krylov subspace model-order algorithm.