Abstract:
A method is provided of forming an olefin from a first olefin and a second olefin in a metathesis reaction, comprising reacting the first olefin with the second olefin in the presence of a compound that catalyzes the metathesis reaction such that the molar ratio of the compound to the first or the second olefin is from 1:500 or less, and the conversion of the first or the second olefin to the olefin is at least 30%.
Abstract:
The invention relates to a method of forming an olefin from a first olefin and a second olefin in a metathesis reaction, comprising step (i): (i) reacting the first olefin with the second olefin in the presence of a compound that catalyzes said metathesis reaction such that the molar ratio of said compound to the first or the second olefin is from 1:500 or less, and the conversion of the first or the second olefin to said olefin is at least 50%, characterized in that as compound that catalyzes said metathesis reaction a compound of the following formula is used: wherein M is Mo or W; R1 is aryl, heteroaryl, alkyl, or heteroalkyl; optionally substituted; R2 and R3 can be the same or different and are hydrogen, alkyl, alkenyl, heteroalkyl, heteroalkenyl, aryl, or heteroaryl; optionally substituted; R5 is alkyl, alkoxy, heteroalkyl, aryl, heteroaryl, silylalkyl, silyloxy, optionally substituted; and R4 is a residue R6—X—, wherein X═O and R6 is aryl, optionally substituted; or X═S and R6 is aryl, optionally substituted; or X═O and R6 is (R7, R8, R9)Si; wherein R7, R8, R9 are alkyl or phenyl, optionally substituted; or X═O and R6 is (R10, R11, R12)C, wherein R10, R11, R12 are independently selected from phenyl, alkyl; optionally substituted; and to the catalysts used in the method.
Abstract:
A compound of the formula II (I) in which X is substituted pyrrolide with the general structure of (II) in which Ra-Rd are independently selected from H, C1-C4 alkyl, C1-C4 alkoxy, aryl, aryloxy, dialkylamino, diarylamino, halogen, trifluoromethyl, cyano, nitro, sulfonyl and sulfinyl. Y is C1-C6 alkoxy, C1-C10 aryloxy, optionally substituted; R1 is selected from H, C1-C12 alkyl and 5- to 18-membered aryl, optionally substituted; R2 is selected from C1-C12-alkyl, 5- to 18-membered aryl, optionally substituted; R3 is selected from C1-C12 alkyl, 5- to 18-membered aryl, optionally substituted; and 15 124-R11 are independently selected from H, C1-C4 alkyl and halogen. The compounds are particularly effective precursors of metathesis catalysts for the polymerisation of dicyclopentadiene.
Abstract:
The disclosure provides Group 6 complexes, which, in some embodiments, are useful for catalyzing olefin metathesis reactions. In some embodiments, the compounds are compounds of the following formula: wherein: M is a Group 6 metal atom; X is an oxygen atom, ═N—R5, ═N—N(R5)(R5′) or ═N—O—R5, R5 and R5′ independently being various substituents, such as aryl or heteroaryl, each optionally substituted; n is 0 or 1; Rz is a neutral ligand; R1 is hydrogen or an organic substituent; R2 is an aryl or heteroaryl group, each optionally substituted; R3 is an anionic ligand; and R4 is an anionic ligand, such as a pyrrolide, a pyrazolide, an imidazolide, an indolide, an azaindolide, or an indazolide, each optionally substituted.
Abstract:
The disclosure provides Group 6 complexes, which, in some embodiments, are useful for catalyzing olefin metathesis reactions. In some embodiments, the compounds are compounds of the following formula (I) wherein: M is a Group 6 metal atom; X is an oxygen atom, ═N—R5, ═N—N(R5)(R5′) or ═N—O—R5, R5 and R5′ independently being various substituents, such as aryl or heteroaryl, each optionally substituted; n is 0 or 1; Rz is a neutral ligand; R1 is hydrogen or an organic substituent; R2 is an aryl or heteroaryl group, each optionally substituted; R3 is an anionic ligand; and R4 is an anionic ligand, such as a pyrrolide, a pyrazolide, an imidazolide, an indolide, an azaindolide, or an indazolide, each optionally substituted.
Abstract:
Method of forming an olefin from a first olefin and a second olefin in a metathesis reaction, comprising step (i): (i) reacting the first olefin with the second olefin in the presence of a silica supported Mo- or W-alkylidene catalyst, wherein the first olefin and the second olefin are different from one another.
Abstract:
Compound of formula (I) wherein M is W; R1 is H, aryl, heteroaryl, alkyl, or heteroalkyl, optionally substituted, respectively; R2 and R3 can be the same or different and are alkyl, alkenyl, heteroalkyl, heteroalkenyl, aryl, or heteroaryl, optionally substituted, respectively, or hydrogen; R5 is a residue R6—X—, wherein R6 is alkyl, aryl, heteroalkyl, heteroaryl, optionally substituted, respectively; (R7, R8, R9)Si; wherein R7, R8, R9 are independently alkyl, alkoxy, phenyl or phenoxy, optionally substituted, respectively; (R10, R11, R12)C, wherein R10, R11, R12 are independently phenyl, alkyl, optionally substituted, respectively; X═O, S, or NR13, wherein R13 is H; or alkyl or aryl, optionally substituted, respectively; or R5 is R6—CO—NR13, wherein R6 and NR13 have the meaning as defined above, or wherein R6 and R13 taken together form a carbon chain having from 2 to 6 carbon atoms; R5 is a 4 to 8 membered N-containing carbon ring, wherein N is linked to M; and R4 is a residue O—Si(O—)3, and represents silica to which M is linked forming a M-O—Si(O—)3 moiety, preferably wherein silica is comprised in a solid support; under the proviso that a compound in which R1=2,6-diisopropylphenyl, R5 dimethylpyrrol-1-yl, R2=tBu, and R3═H is excluded.
Abstract:
Compound of formula (4) or formula (5), wherein L is a neutral ligand, preferably a nitrogen-containing heterocyclic carbene (NHC) such as carbene containing at least two nitrogen atoms, a cyclic aminoalkyl carbene (CAAC) or a bicyclic aminoalkyl carbene (BICAAC); R1, R3, R4, R5, R6, R7, R8, R9, R10 and R11 are, independently, H, unbranched or branched C1-20 alkyl, C5-9 cycloalkyl, unbranched or branched C1-20 alkoxy, optionally bearing one or more halogen atoms, respectively; or aryl, optionally substituted with one or more of unbranched or branched C1-20 alkyl, C5-9 cycloalkyl, unbranched or branched C1-20 alkoxy, aryl, aryloxy, unbranched or branched C1-20 alkylcarbonyl, arylcarbonyl, unbranched or branched C1-20 alkoxycarbonyl, aryloxycarbonyl, heteroaryl, carboxyl, cyano, nitro, amido, aminosulfonyl, N-heteroarylsulfonyl, unbranched or branched C1-20 alkylsulfonyl, arylsulfonyl, unbranched or branched C1-20 alkylsulfinyl, arylsulfinyl, unbranched or branched C1-20 alkylthio, arylthio, sulfonamide, halogen or N(Ry)(Rz), wherein Ry and Rz are independently selected from H and C1-20 alkyl: RC is H, unbranched or branched C1-20 alkyl.
Abstract:
Method of forming an olefin from a first olefin and a second olefin in a metathesis reaction, comprising step (i): (i) reacting the first olefin with the second olefin in the presence of a silica supported Mo- or W-alkylidene catalyst, wherein the first olefin and the second olefin are different from one another.