Abstract:
A top-emitting flexible organic light emission diode device and preparation method thereof are provided. The device involves overlapping a substrate, an anode layer, a hole injection layer, a hole transport layer, an emission layer, an electron transport layer, an electron injection layer and a cathode layer sequentially. The material of the cathode is scythe-silver alloy or ytterbium-silver alloy. The method for preparing the device comprises the following steps: cleaning and drying the substrate; depositing the anode layer on the surface of the substrate; overlapped depositing the hole injection layer, the hole transport layer, the emission layer, the electron transport layer and the electron injection layer sequentially on the surface of the anode layer; depositing the cathode layer on the surface of the electron injection layer to obtain the device.
Abstract:
A method is described for collecting inference execution events from forward-chaining business rule engines and constructing causality network graphs for visual presentation to an end user. Using the causality network graph, the user may navigate logic paths leading to particular conclusions or actions.
Abstract:
An organic electroluminescence device comprises the following structure: a conductive base (110), a hole injection layer (120), a light emission layer (140), and a cathode layer (170) are laminated in sequence. The material of the hole injection layer (120) comprises a conductive polymer and an azo initiator. A nano-network structure is provided on the connecting surface of the hole injection layer (120) and the light emission layer (140). After being heated to a higher temperature, the azo initiator can be decompounded to release N2, thus the nano-network structure is formed on the surface of the hole injection layer (120). The nano-network structure can efficiently increase the contacting area of the hole injection layer (120) and the adjacent layer. The injection efficiency of the hole is improved. A manufacturing method of the organic electroluminescence device is also provided.
Abstract:
A method and computer program product for optimization of large scale resource scheduling problems. Large scale resource scheduling problems are computationally very hard and extremely time consuming to solve. This invention provides a Lagrangian relaxation based solution method. The method has two distinct characteristics. First, the method is formal. It is completely structure-based and does not use any problem domain specific knowledge in the solution process, either in the dual optimization or the primal feasibility enforcement process. Second, updating the Lagrangian multipliers after solution of every sub-problem without using penalty factors results in fast and smooth convergence in the dual optimization. The combination of high quality dual solution and the structure-based primal feasibility enforcement produces a high quality primal solution with very small solution gap. An optimal solution is first found to the dual of the resource scheduling problem by sequentially finding a solution to a plurality of sub-problems and updating a set of values used in the dual problem formulation after each sub-problem solution is obtained. Coupling constraint violations are systematically reduced and the set of values are updated until a feasible solution to the primal resource scheduling problem is obtained. An initial set of multiplier values is further determined by solving a relaxed version of the primal problem where most of the local constraints except the variable bounds are relaxed.
Abstract:
A substrate, manufacturing method thereof, and an organic electroluminescent device using the same are provided, belonging to photoelectron field. The substrate includes a paper layer (102), a first protection layer (101) formed on the lower surface of the paper layer, and a second protection layer (103) formed on the upper surface and covering the same of the paper layer. The substrate, solves problems of paper which is easy to absorb humidity and has high permeability of oxygen by a protection processing that said paper is coated with the heat seal film of polyethylene terephthalate coated with Polyvinyl Dichloride. At the meantime, the substrate has the advantages of cheap material, extensive sources, simple manufacturing process, good flexibility of the substrate, and good capability of preventing the permeability of water as well.
Abstract:
A power distribution system has a plurality of reactive power resources including capacitor banks and distributed energy resources connected to branches of the power distribution system. Power loss is reduced in the distribution system by determining discrete switch states for the capacitor banks and continuous set points for the distributed energy resources, so that the reactive power provided by the reactive power resources reduces power loss while optionally correcting voltage violations in the power distribution system when the capacitor banks are set in accordance with the respective discrete switch states and the distributed energy resources are operated at the respective continuous set points. The range of values for the continuous set points is constrained based on maximum and minimum reactive power limits for each distributed energy resource under consideration.
Abstract:
Outage scope for an electrical distribution system is estimated by generating downstream outage prediction information indicating whether any service area protected by one of the terminal protective devices of the electrical distribution system likely has a power outage based on reported outage information. Upstream outage prediction information is generated which indicates whether any service area protected by one of the non-terminal protective devices of the electrical distribution system likely has a power outage based on the downstream outage prediction information. Each protective device is predicted to be in an open or closed state based on the downstream and upstream outage prediction information so that more than one open protective device can be identified when more than one fault occurs in different parts of the electrical distribution system.
Abstract:
A flexible organic electroluminescent device and a manufacturing method thereof are provided. The device comprises a substrate (101), an anode layer (103), a hole-injecting layer (104), a hole-transporting layer (105), a light-emitting layer (106), an electron-transporting layer (107), an electron-injecting layer (108), and a cathode layer (109), which are stacked in order. The device further comprises a buffer layer (102) between the substrate (101) and the anode layer (103). The anode layer (103) is a multilayer composite structure, which comprises ZnS/Ag/MoO3. The bonding force between the anode layer (103) and the substrate (101) is enhanced by inserting buffer layer (102). The device has a good bending endurance performance, a stable luminous property and a high light emitting efficiency.
Abstract:
The method determines the optimal settings for the controllable taps ut of voltage regulating transformers and the capacitor bank switches uc in a distribution network. Var optimization is calculated with the controllable tap settings ut fixed at an initial value, or the best value found so far, to output an optimized set of control settings uc. Voltage optimization is calculated with the control settings uc fixed at the best solution found so far, to output an optimal set of control settings ut. Using an objective function, system performance is evaluated using the optimal set of control settings ut and uc and repeating the steps until either the control values ut and uc do not change from one iteration to the next, the objective function value does not change or if the new objective function value is greater than the last. The control values ut and uc are then output to a distribution control system.
Abstract:
The system integrates a business rule engine with an engineering application that performs one or more predetermine functions relating to the monitoring, analyzing or controlling of a physical system. Rule processing requests are transmitted from the engineering application to a rule based service which manages the data retrieval, data insertion, rule engine invocation activities in a two pass design so as to optimize the rule processing performance for online system monitoring and control.