Abstract:
A backlight module and a display panel device using the same are provided. The backlight module includes a light source module, an open frame, and a reflector sheet. The open frame is disposed around the light source module and has a first free-end and a second free-end. A space interval exists between the first and second free-ends. The reflector sheet is disposed on a rear side of the light source module and has a body and a sidewall. The sidewall corresponds to the space interval between the first and second free-ends and extends over the light source module. The display panel further includes a liquid crystal display panel (LCD panel) on the light source module and a front frame which is disposed on the LCD panel enclosing a lateral side of the LCD panel. The sidewall of the reflector sheet extends between the lateral side of the LCD panel and the front frame to provide insulation.
Abstract:
A thermal bonding structure and manufacture process of a flexible printed circuit (FPC) board are disclosed, and the thermal bonding structure includes a laminated structure having a first insulating layer with a solder pad area and showing parts of a first conductive layer, the first conductive layer, a second insulating layer, a second conductive layer, and a third insulating layer with a bonding area such that a part of the second conductive layer is exposed, and at least a through hole passing through the first conductive layer to the second conductive layer for propagating heat energy to fuse a solder. Accordingly, the reduction of heat energy lost in the third insulating layer improves the bonding quality, shortens the bonding period, and maintains the material stability under high temperature resulted from high heat energy.
Abstract:
The heat dissipation structure of the backlight module of the present invention comprises a circuit board, a heat-conductive element (such as thermally conductive glue) and a light-emitting diode (LED) chip, wherein the circuit board has an electric circuit layer and a heat conductive layer respectively formed on two opposite surfaces thereof. The circuit board has a plurality of through holes penetrating through the electric circuit layer and the heat-conductive layer of the circuit board, wherein each of the through holes is filled with heat-conductive material. The heat-conductive element is placed on the circuit layer and covers the through holes, and the LED chip is disposed on the heat-conductive element and is electrically connected to the electric circuit layer.
Abstract:
A thermal bonding structure and manufacture process of a flexible printed circuit (FPC) board are disclosed, and the thermal bonding structure includes a laminated structure having a first insulating layer with a solder pad area and showing parts of a first conductive layer, the first conductive layer, a second insulating layer, a second conductive layer, and a third insulating layer with a bonding area such that a part of the second conductive layer is exposed, and at least a through hole passing through the first conductive layer to the second conductive layer for propagating heat energy to fuse a solder. Accordingly, the reduction of heat energy lost in the third insulating layer improves the bonding quality, shortens the bonding period, and maintains the material stability under high temperature resulted from high heat energy.
Abstract:
A backlight module and a display panel device using the same are provided. The backlight module includes a light source module, an open frame, and a reflector sheet. The open frame is disposed around the light source module and has a first free-end and a second free-end. A space interval exists between the first and second free-ends. The reflector sheet is disposed on a rear side of the light source module and has a body and a sidewall. The sidewall corresponds to the space interval between the first and second free-ends and extends over the light source module. The display panel further includes a liquid crystal display panel (LCD panel) on the light source module and a front frame which is disposed on the LCD panel enclosing a lateral side of the LCD panel. The sidewall of the reflector sheet extends between the lateral side of the LCD panel and the front frame to provide insulation.
Abstract:
A thermal bonding structure and manufacture process of a flexible printed circuit (FPC) board are disclosed, and the thermal bonding structure includes a laminated structure having a first insulating layer with a solder pad area and showing parts of a first conductive layer, the first conductive layer, a second insulating layer, a second conductive layer, and a third insulating layer with a bonding area such that a part of the second conductive layer is exposed, and at least a through hole passing through the first conductive layer to the second conductive layer for propagating heat energy to fuse a solder. Accordingly, the reduction of heat energy lost in the third insulating layer improves the bonding quality, shortens the bonding period, and maintains the material stability under high temperature resulted from high heat energy.
Abstract:
The heat dissipation structure of the backlight module of the present invention comprises a circuit board, a heat-conductive element (such as thermally conductive glue) and a light-emitting diode (LED) chip, wherein the circuit board has an electric circuit layer and a heat conductive layer respectively formed on two opposite surfaces thereof. The circuit board has a plurality of through holes penetrating through the electric circuit layer and the heat-conductive layer of the circuit board, wherein each of the through holes is filled with heat-conductive material. The heat-conductive element is placed on the circuit layer and covers the through holes, and the LED chip is disposed on the heat-conductive element and is electrically connected to the electric circuit layer.
Abstract:
Flat panel display. A flat panel display comprises a first case, a second case connected to the first case, a light guide unit disposed between the first and second cases, a flat display panel and a light assembly. The light guide unit includes a light incident surface. The flat display panel includes a display surface between the first case and the light guide unit. A recess, formed by the light incident surface and the first and second cases, includes an opening toward a direction substantially parallel to the display surface. The light assembly is fixed in the recess, comprising a third case and a light source disposed in the third case.