摘要:
A method for wafer backside alignment overlay accuracy includes forming a buried layer on a front-side of a wafer; forming a conductive layer on the buried layer and patterning a first test structure and a second test structure therein; forming an etch stop layer on the conductive layer; etching through the wafer from the backside to perform an alignment process with the first test structure; and determining an overlay accuracy of the alignment process with the second test structure. The first test structure includes an optical vernier and the second test structure includes an electrical testing structure.
摘要:
Disclosed is a method and a system for forming alignment marks on a transparent substrate. A light reflective layer is deposited over an optically transparent substrate of a wafer. A region is defined around an alignment mark on the optically transparent substrate. The light reflective layer is removed from a substantial portion of the transparent substrate excluding the region. In addition, a micro electro-mechanical systems device is disclosed. The device comprises an optically transparent substrate, at least one optically partially transparent alignment mark on the optically transparent substrate, and a plurality of reflective elements or imaging pixels attached to the optically transparent substrate.
摘要:
A method and a system for managing network identity are provided. The method and the system realize a management mechanism of temporary identification (ID) and real ID, which simultaneously achieves functionalities such as anonymity, accounting, and authorization. A short-term certificate and a corresponding public/private key pair are used to protect a temporary ID usable for accounting. This protection prevents the temporary ID from theft. The user generates a digital signature in the reply to a charge schedule statement from the visited network. This procedure is incorporated into an existing authentication framework based on Transport Layer Security (TLS) in order to provide an undeniable payment mechanism. The payment mechanism is applicable in an environment of multiple network operators and reduces the difficulty of integrating network operators. The method and the system do not have to consult a certificate revocation list (CRL) for authentication and thus are able to shorten authentication time.
摘要:
Disclosed is a method and a system for forming alignment marks on a transparent substrate. A light reflective layer is deposited over an optically transparent substrate of a wafer. A region is defined around an alignment mark on the optically transparent substrate. The light reflective layer is removed from a substantial portion of the transparent substrate excluding the region. In addition, a micro electro-mechanical systems device is disclosed. The device comprises an optically transparent substrate, at least one optically partially transparent alignment mark on the optically transparent substrate, and a plurality of reflective elements or imaging pixels attached to the optically transparent substrate.
摘要:
Disclosed is a method and a system for forming alignment marks on a transparent substrate. A light reflective layer is deposited over an optically transparent substrate of a wafer. A region is defined around an alignment mark on the optically transparent substrate. The light reflective layer is removed from a substantial portion of the transparent substrate excluding the region. In addition, a micro electro-mechanical systems device is disclosed. The device comprises an optically transparent substrate, at least one optically partially transparent alignment mark on the optically transparent substrate, and a plurality of reflective elements or imaging pixels attached to the optically transparent substrate.
摘要:
A method and a system for secure authentication in a wireless network are provided. The method comprises the following steps. First, a network device and a client device of a wireless network authenticate each other with EAP-TLS. Wherein, the network device mentioned above is a gateway or an access point. Then, the network device and the client device generate a TLS master secret jointly. In addition, the method uses a distributed mechanism to prevent the consequences of the failure of a single AAA server, and to alleviate the consequences resulting from a violated network device. Furthermore, the method includes a multiple time digital signature mechanism achieved by performing multiple times of one-way hash operation to enable verification and revocation of certificate.
摘要:
Disclosed is a method and a system for forming alignment marks on a transparent substrate. A light reflective layer is deposited over an optically transparent substrate of a wafer. A region is defined around an alignment mark on the optically transparent substrate. The light reflective layer is removed from a substantial portion of the transparent substrate excluding the region. In addition, a micro electro-mechanical systems device is disclosed. The device comprises an optically transparent substrate, at least one optically partially transparent alignment mark on the optically transparent substrate, and a plurality of reflective elements or imaging pixels attached to the optically transparent substrate.
摘要:
A method for wafer backside alignment overlay accuracy includes forming a buried layer on a front-side of a wafer; forming a conductive layer on the buried layer and patterning a first test structure and a second test structure therein; forming an etch stop layer on the conductive layer; etching through the wafer from the backside to perform an alignment process with the first test structure; and determining an overlay accuracy of the alignment process with the second test structure. The first test structure includes an optical vernier and the second test structure includes an electrical testing structure.
摘要:
A method and a system for secure authentication in a wireless network are provided. The method comprises the following steps. First, a network device and a client device of a wireless network authenticate each other with EAP-TLS. Wherein, the network device mentioned above is a gateway or an access point. Then, the network device and the client device generate a TLS master secret jointly. In addition, the method uses a distributed mechanism to prevent the consequences of the failure of a single AAA server, and to alleviate the consequences resulting from a violated network device. Furthermore, the method includes a multiple time digital signature mechanism achieved by performing multiple times of one-way hash operation to enable verification and revocation of certificate.