Abstract:
In order to reduce the impedance of an ultrasonic transducer array, an ultrasonic probe is provided in which a plurality of holes 34 are disposed running in the thickness direction of a piezoelectric material plate 32 and electrodes 36 are provided on the internal walls of the holes so as to exploit the ultrasonic vibration of the wall of piezoelectric material between the adjacent holes according to the electromechanical coupling coefficient k.sub.31. An ultrasonic imaging apparatus employing such an ultrasonic probe is also provided.
Abstract:
An ultrasonic imaging apparatus devised to implement contrast imaging of enhanced S/N ratios. The apparatus comprises: an exciting unit for generating ultrasonic waves by stimulating a contrast medium introduced into a target object; a contrast image creating unit for creating a contrast image based on the ultrasonic waves generated through stimulation; an echo generating unit for generating echoes of the ultrasonic waves transmitted into the target object; an echo image creating unit for creating an echo image based on the generated echoes; and a display unit for superimposing the contrast image and the echo image for display.
Abstract:
A stereoscopic ultrasonic imaging apparatus for displaying in a short time an ultrasonic image giving a sense of perspective. The apparatus comprises: two two-dimensional ultrasonic receiving element arrays arranged a predetermined distance apart; an orthoscopic image generation unit for generating a plurality of orthoscopic images of an observed surface perpendicularly intersecting an ultrasonic beam applied, the orthoscopic images having a predetermined parallax therebetween and generated on the basis of received ultrasonic data obtained by the element arrays; and a stereoscopic display unit for displaying stereoscopically the orthoscopic images generated by the orthoscopic image generation unit.
Abstract:
An ultrasonic pulse Doppler apparatus has: range gate (20) for separately performing range-gating of the respective received ultrasonic echo signals of the oscillation elements of an ultrasonic probe (1) each time the signals are respectively adjusted in correspondence with the direction of a received ultrasonic beam; pulse stretcher filter (21) for extending the duration of the respective plurality of range-gated received signals while storing the energy of the signals; phasing/adding stage (7a) for matching the phases of a plurality of output signals from the pulse stretcher filter and performing addition thereof; detection portion (12) for effecting coherent detection of an output signal from said phasing/adding stage; and Doppler signal generating components (15, 16) for respectively generating Doppler signals on the basis of an output signal from the detection portion.The received echo signal of each of the oscillation elements is range-gated, and the duration of the respective range-gated signals is extended by the pulse stretcher filter. Subsequently, the signals are matched in phase and added. Accordingly, the level of the received signal hardly reaches the limit of the dynamic range of a signal processing circuit employed.
Abstract:
The invention relates to an ultrasonic imaging system for diagnostic use or non-destructive testing. The system comprises a first array of ultrasonic transducers coupled to the object space wherein objects under examination are located or distributed; a second array of ultrasonic transducers coupled to a reconstitution space wherein the acoustic images of the objects are to be replicated; and time inversion means. The time inversion means has a set of waveform memories which first captures the ultrasonic signals from said objects, typically echos produced in response to suitable excitation, via said first array of ultrasonic transducers with suitable amplification and preconditioning as necessary. Then readouts of these signals are provided inversely in time which drive the second array of ultrasonic transducers with said time inverted signals to reproject inversely propagating ultrasonic wavetrains forming replicated acoustic images of the objects. By optically monitoring the ultrasonic energy distribution in said reconstitution space, via an opto-acoustic interaction effect, the system enables the observation of the object images in real time on each complete acquisition of said ultrasonic signal set at the first array of transducers, i.e. one complete picture per each echo sounding, which means in case of a medical diagnostic system of up to several thousand pictures per second.
Abstract:
An ultrasonic diagnostic method and apparatus are provided for probing the condition in a tissue of a living body by projecting an ultrasonic beam onto the living body from a vibrator array transducer probe consisting of a plurality of tiny ultrasonic vibrators. The apparatus executes two scanning actions, of which one is a normal linear scanning that drives the ultrasonic vibrators sequentially in the manner to cause a sequential parallel shift of the ultrasonic beam substantially perpendicular to the vibrator array, and the other of which is an inclined linear scanning that drives the ultrasonic vibrators at individually different timings while sequentially shifting the driven vibrators in the manner to cause sequential parallel shift of the ultrasonic beam having an angle of inclination against the vibrator array. The images obtained through the normal linear scanning and the inclined linear scanning are combined to form a composite high-resolution image.
Abstract:
A drying furnace including: a heating portion which heats a coating target having been subjected to electrodeposition coating, wherein (i) the heating portion sets an inner furnace temperature of an upstream of the drying furnace to be lower than a temperature at which moisture in electrodeposition paint boils, (ii) the heating portion sets an inner furnace temperature of a downstream of the drying furnace to be higher than or equal to a glass transition point, (iii) the heating portion locally heats a gap position formed at a member bonding portion of the coating target at the upstream of the drying furnace, and (iv) the heating portion sequentially changes a heated portion from an upper side to a lower side of the coating target when the gap position is locally heated.
Abstract:
In order to choke a capillary vessel of a man with an expanded microballoon, a microballoon 1 is injected into a blood flow system of a man 12, and the microballoon 1 is expanded by warming a predefined region 13 in the man to increase the temperature of the region.
Abstract:
A method and apparatus for ultrasonically producing 3-dimensional images in real time, wherein a device transmits an ultrasonic wave toward a solid bearing angle obtained by dividing into multiple portions a solid bearing angle subtended by a sonic field to be examined, and receives echoes therefrom, with the transmitted waves being sequential and the received echoes being concurrent multiple waves from each small solid angle, and a device for producing the 3-dimensional images by range gating the received echo signals in the depth direction of the sonic field being examined and then producing direct vision images in the direction of the transmitted ultrasonic waves based on the echo signals, wherein the range gated signals are quadrature detected in one embodiment and/or are subjected to 2-dimensional Fourier transformation in another embodiment.
Abstract:
The present invention comprises: a search unit; a hollow guide for stabbing a subject; a manipulating device for protruding the search unit out of the tip of the guide and for moving the search unit along a predetermined orbit; device for transmitting/receiving the ultrasound during the movement by the manipulating means along the orbit; and device for producing an image based on the received echo signal by means of an aperture synthesis technique.