Abstract:
Various embodiments comprise apparatuses to assign a respective one of a sequence of unique device identification (ID) values to each die in a stacked device. In an embodiment, each die may include a respective assignment device to operate on an input and generate, as an output, the respective one of the sequence of the unique device ID values. Each die may also include a respective evaluation device to detect a total number of dice in the stack. Additional apparatuses and methods are described.
Abstract:
Duty cycle correction systems and methods of adjusting duty cycles are provided. One such duty cycle correction system includes a duty cycle adjustor and a variable delay line coupled to the output of the duty cycle adjustor. First and second phase detectors have first inputs coupled to the output of the duty cycle adjustor through an inverter and second inputs coupled to the output of the variable delay line. The phase detectors cause the delay line to align rising or falling edges of signals at the output of the delay line with rising or falling edges, respectively, of signals at the output of the inverter. The controller simultaneously causes the duty cycle adjustor to adjust the duty cycle of the output clock signal until the rising and falling edges of signals at the output of the delay line are aligned with rising and falling edges, respectively, of signals at the output of the inverter.
Abstract:
A system comprising a control logic that generates a code having n digits, a translation logic coupled to the control logic that translates the code to a new code having greater than n digits, and a variable resistance logic coupled to the translation logic and comprising greater than n semiconductor devices. A resistance associated with the variable resistance logic depends on activation statuses of the semiconductor devices. The translation logic adjusts at least some of the semiconductor devices in accordance with the new code.
Abstract:
A system comprising a control logic that generates a code having n digits, a translation logic coupled to the control logic that translates the code to a new code having greater than n digits, and a variable resistance logic coupled to the translation logic and comprising greater than n semiconductor devices. A resistance associated with the variable resistance logic depends on activation statuses of the semiconductor devices. The translation logic adjusts at least some of the semiconductor devices in accordance with the new code.
Abstract:
An ethylene-based polymer which is an ethylene/C4 to C10 α-olefin copolymer and satisfies the following requirements [k1] to [k3]: [k1] melt flow rate (MFR) under a loading of 2.16 kg at 190° C. is in the range of 1.0 to 50 g/10 minutes; [k2] LNR defined as a scale of neck-in upon film molding is in the range of 0.6 to 1.4; and [k3] take-up speed at break [DS (m/min)] at 160° C. and melt flow rate (MFR) satisfy the following relationship (Eq-1): 12×MFR0.577≦DS≦165×MFR0.577 (Eq-1), and a thermoplastic resin composition containing the ethylene-based polymer, provide a molded product, preferably a film, excellent in moldability and mechanical strength. The ethylene-based polymer can be efficiently obtained by polymerization in the presence of an olefin polymerization catalyst formed from a solid carrier, (A) a solid transition metal catalyst component obtained by contacting (a) a compound of a transition metal of the group 4 in the periodic table, containing at least one ligand having a cyclopentadienyl skeleton, (b) an organoaluminum oxy compound, (c) a multifunctional organic halide, and if necessary (d) an organoaluminum compound, and if necessary (B) organoaluminum compound.
Abstract:
A data processor such as a household information system which is realized by an image display with which the initial image of the system changes every time the system is started, and the displayed object moves interactively, employing a small memory. When the power source of the processor is turned on, the initial image display processing unit is started. In the initial image display processing unit, the screen display update processing unit changes the image on the display unit every after a predetermined period of time based upon the state of the images that have been stored in advance in the state storage unit. Moreover, any input from the input unit is detected by the input detect unit. Then, the image state select processing unit selects the state of a new image that corresponds to the input and stores it in the state storage unit.
Abstract:
A wiring processing method for determining a wiring route for connecting terminals includes a step of dividing a wirable region into a plurality of rectangular regions in a virtual region corresponding to a chip, a step of searching a rectangular region for connecting the terminals to be wired by tracing mutually crossings rectangular regions, and a step of determining a detailed wiring route inside the searched rectangular region. Since the search is conducted by use of the rectangular region as a unit, high speed search can be made.
Abstract:
Duty cycle correction systems and methods of adjusting duty cycles are provided. One such duty cycle correction system includes a duty cycle adjustor and a variable delay line coupled to the duty cycle adjustor. First and second phase detectors have first inputs coupled to the duty cycle adjustor through an inverter and second inputs coupled to the variable delay line. The phase detectors cause the delay line to align rising or falling edges of signals at the output of the delay line with rising or falling edges, respectively, of signals at the output of the inverter. The controller simultaneously causes the duty cycle adjustor to adjust the duty cycle of the output clock signal until the rising and falling edges of signals at the output of the delay line are aligned with rising and falling edges, respectively, of signals at the output of the inverter.
Abstract:
The present invention provides a film including, in at least a part thereof, a layer comprising an ethylene-based resin, which is a copolymer of ethylene and an α-olefin of 4 to 10 carbon atoms, and satisfies the following requirements (1) to (5) at the same time or an ethylene-based resin composition containing the resin; (I) the melt flow rate at 190° C. under a load of 2.16 kg is in the range of 0.1 to 50 g/10 min, (II) the density is in the range of 875 to 970 kg/m3, (III) the ratio of a melt tension at 190° C. to a shear viscosity at 200° C. and an angular velocity of 1.0 rad/sec is in the range of 1.00×10−4 to 9.00×10−4, (IV) the sum of the number of methyl branches and the number of ethyl branches, each number being based on 1000 carbon atoms and measured by 13C-NMR, is not more than 1.8, and (V) the zero shear viscosity [η0(P)] at 200° C. and the weight-average molecular weight (Mw) as measured by a GPC-viscosity detector method (GPC-VISCO) satisfy the following relational formula (Eq-1): 0.01×10−13×Mw3.4≦η0≦4.5×10−13×Mw3.4 (Eq-1).
Abstract:
Duty cycle correction systems and methods of adjusting duty cycles are provided. One such duty cycle correction system includes a duty cycle adjustor and a variable delay line coupled to the output of the duty cycle adjustor. First and second phase detectors have first inputs coupled to the output of the duty cycle adjustor through an inverter and second inputs coupled to the output of the variable delay line. The phase detectors cause the delay line to align rising or falling edges of signals at the output of the delay line with rising or falling edges, respectively, of signals at the output of the inverter. The controller simultaneously causes the duty cycle adjustor to adjust the duty cycle of the output clock signal until the rising and falling edges of signals at the output of the delay line are aligned with rising and falling edges, respectively, of signals at the output of the inverter.