Abstract:
A method and apparatus for reducing blood flow to an aneurysm proximate to a bifurcation having a source blood vessel a first branch vessel and a second branch vessel, the method comprising: providing a first mesh-like tube of bio-compatible material, the first mesh-like tube exhibiting a porosity index pre-selected to skew blood flow about the bifurcation away from the aneurysm; inserting the first mesh-like tube into the source blood vessel and the first branch vessel; and securing the first mesh-like tube to at least one of the source blood vessel and the first branch vessel, whereby blood flowing from the source blood vessel flows without undue impedance to the first branch vessel and the second branch vessel while being skewed away from the aneurysm.
Abstract:
A method of reducing or blocking blood to a selected blood vessel or a selected part of the wall thereof, particularly for treating an aneurysm, an arteriovenous or dural malformation in a blood vessel, or for devascularizing tumors, by deploying in the blood vessel an expandable member having a contracted condition for manipulation within the blood vessel, and expandable to an expanded condition in the blood vessel for reducing or blocking blood flow through the selected part thereof, thereby promoting coagulation of blood therein, and for preventing thrombus material from being swept downstream, and applying a local stimulus to the interior of the malformation effective to initiate or accelerate coagulation of blood therein. In some described embodiments, the expandable member is a permeable mesh-like tube of biocompatible material, and in other described embodiments, the expandable member is an inflatable balloon.
Abstract:
An implantable device for positioning about a blood vessel bifurcation zone to control flow of embolic material around said bifurcation. The device comprises an anchoring element extending within said zone of bifurcation to anchor said device therein, and a deflecting element, associated with said anchoring element, said deflecting element comprising a mesh having a mesh size sufficient to allow passage of blood without hindrance while occluding passage of embolic material exceeding a predetermined size.
Abstract:
A method for reducing blood flow to an aneurysm proximate to a bifurcation having a source blood vessel a first branch vessel and a second branch vessel, the method comprising: providing a first mesh-like tube of bio-compatible material, the first mesh-like tube exhibiting a porosity index pre-selected to skew blood flow about the bifurcation away from the aneurysm; inserting the first mesh-like tube into the source blood vessel and the first branch vessel; and securing the first mesh-like tube to at least one of the source blood vessel and the first branch vessel, whereby blood flowing from the source blood vessel flows without undue impedance to the first branch vessel and the second branch vessel while being skewed away from the aneurysm.
Abstract:
An implantable device for positioning in the vicinity of the bifurcation of the common carotid artery (CCA) into the internal carotid artery (ICA) and the external carotid artery (ECA) comprises a deflecting element suitable to deflect the flow of embolic material flowing in the CCA toward the ICA, into the ECA.
Abstract:
An implantable device for positioning in the vicinity of the bifurcation of the common carotid artery (CCA) into the internal carotid artery (ICA) and the external carotid artery (ECA) comprises a deflecting element suitable to deflect the flow of embolic material flowing in the CCA toward the ICA, into the ECA.
Abstract:
A method and apparatus for reducing blood flow to an aneurysm proximate to a bifurcation having a source blood vessel a first branch vessel and a second branch vessel, the method comprising: providing a first mesh-like tube of bio-compatible material, the first mesh-like tube exhibiting a porosity index pre-selected to skew blood flow about the bifurcation away from the aneurysm; inserting the first mesh-like tube into the source blood vessel and the first branch vessel; and securing the first mesh-like tube to at least one of the source blood vessel and the first branch vessel, whereby blood flowing from the source blood vessel flows without undue impedance to the first branch vessel and the second branch vessel while being skewed away from the aneurysm.
Abstract:
A method and apparatus for reducing blood flow to an aneurysm proximate to a bifurcation having a source blood vessel a first branch vessel and a second branch vessel, the method comprising: providing a first mesh-like tube of bio-compatible material, the first mesh-like tube exhibiting a porosity index pre-selected to skew blood flow about the bifurcation away from the aneurysm; inserting the first mesh-like tube into the source blood vessel and the first branch vessel; and securing the first mesh-like tube to at least one of the source blood vessel and the first branch vessel, whereby blood flowing from the source blood vessel flows without undue impedance to the first branch vessel and the second branch vessel while being skewed away from the aneurysm.
Abstract:
In one embodiment, a delivery system for a medical device includes a flexible sheath defining a lumen having a distal end and a flexible shaft having a proximal portion and a distal portion. A retention element and a pushing element, spaced proximally from the retention element, are disposed on the distal portion. The flexible shaft, retention element, and pushing element are disposable within the lumen. The flexible shaft is movable distally through the lumen between a stowed position and a deployed position and is movable proximally through the lumen between the deployed position and a partially deployed position with the retention element proximate to the distal end of the lumen. The retention element is configured to form with the medical device an interference fit with the flexible sheath when the flexible shaft is urged proximally from the retention position to engage the medical device with the flexible sheath.
Abstract:
A method and apparatus for reducing blood flow to an aneurysm proximate to a bifurcation having a source blood vessel a first branch vessel and a second branch vessel, the method comprising: providing a first mesh-like tube of bio-compatible material, the first mesh-like tube exhibiting a porosity index pre-selected to skew blood flow about the bifurcation away from the aneurysm; inserting the first mesh-like tube into the source blood vessel and the first branch vessel; and securing the first mesh-like tube to at least one of the source blood vessel and the first branch vessel, whereby blood flowing from the source blood vessel flows without undue impedance to the first branch vessel and the second branch vessel while being skewed away from the aneurysm.