Abstract:
An optical film with a plurality of micro structures which are capable of collecting incident light to the frontal and normalized view angle of the optical film for reducing the chance of incident light returning to light guild plate so as to enhance light collecting efficiency is provided in the present invention. In an embodiment, the optical film is combined with a flat light source so as to form a backlight system. By means of the merit of the optical film, the quantities of the optical film can be reduced so that the backlight system can have characteristics of thin thickness and low production cost.
Abstract:
A direct backlight module is disclosed, which comprises: a frame; at least a light source, being arranged in the frame; a diffuser, being disposed over the frame; and at least an optical film, being disposed over the diffuser, comprising a substrate having a top surface and a bottom surface; wherein a diffusion unit and a collimation unit are formed on the top surface while using the diffusion unit for diffusing light incident to the bottom surface and the collimation unit for collimating light incident to the bottom surface. The direct backlight module of the invention is capable of enhancing luminous efficiency, and further, it has a comparatively simple structure so that the manufacturing cost of the optical film can be reduced.
Abstract:
A direct backlight module is disclosed, which comprises: a frame; at least a light source, being arranged in the frame; a diffuser, being disposed over the frame; and at least an optical film, being disposed over the diffuser, comprising a substrate having a top surface and a bottom surface; wherein a diffusion unit and a collimation unit are formed on the top surface while using the diffusion unit for diffusing light incident to the bottom surface and the collimation unit for collimating light incident to the bottom surface. The direct backlight module of the invention is capable of enhancing luminous efficiency, and further, it has a comparatively simple structure so that the manufacturing cost of the optical film can be reduced.
Abstract:
The present invention relates to process for fabricating supersphere solid immersion lens (SSIL). The procedure of the present invention comprises the steps of: firstly, coating a positive photoresist layer on a substrate, followed by first exposure and second exposure with different exposure dose separately by first mask and second mask to form the positive photoresist structure with different dimensions and depths. The first exposure dose is supplied enough to make sure the patterns of the first mask can be observed on the positive photoresist layer during the alignment of the second exposure process. And the following reflow process forms a supersphere solid immersion lens (SSIL) structure.
Abstract:
The present invention relates to process for fabricating supersphere solid immersion lens (SSIL). The procedure of the present invention comprises the steps of: firstly, coating a positive photoresist layer on a substrate, followed by first exposure and second exposure with different exposure dose separately by first mask and second mask to form the positive photoresist structure with different dimensions and depths. The first exposure dose is supplied enough to make sure the patterns of the first mask can be observed on the positive photoresist layer during the alignment of the second exposure process. And the following reflow process forms a supersphere solid immersion lens (SSIL) structure.
Abstract:
The present invention relates to a light source package structure, which comprises: an accommodating space for accommodating a light source, a first refraction surface, and at least a second refraction surface. The first refraction surface receives light discharging from the light source while refracting the same to form a first refracting light, the upper part of the first refraction surface further comprising a refracting structure for refracting the light emitted from the light source. The second refraction surface receives and refracts the first refracting light to form a discharging light being emitted out of the light source package structure. Wherein, an included angle is formed between the normal vector of a portion of the second refraction surface and the central axis of the light source package structure. It is noted that the aforesaid package structure can be used in various packaging for improving refraction. In a preferred embodiment, a light source of light emitting diode (LED) is packaged by the light source package structure of the invention for enabling the light emitted from the LED to be discharged out of the package structure by a large angle after being refracted multiple times, so that the LED package structure can be adopted as a flat light source for diverse purpose applied in industry.
Abstract:
The present invention discloses an optical element, having a first optical surface and a second optical surface for receiving an incident light, the optical element comprising: at least a transparent diffusion unit, for scattering the incident light, each being placed on the first optical surface; and at least a transparent collimation unit, for collimating the incident light, each being place on the first optical surface abutted and adjacent to the diffusion unit in an alternative manner.
Abstract:
The present invention discloses an optical film with array of microstructures, having a first optical surface and a second optical surface for receiving an incident light. The optical film comprises at least a transparent microstructure formed on the first optical surface, wherein the microstructure further comprises: a first side for scattering the incident light; and a second side for collimating the incident light.
Abstract:
The present invention relates to a light source package structure, which comprises: an accommodating space for accommodating a light source, a first refraction surface, and at least a second refraction surface. The first refraction surface receives light discharging from the light source while refracting the same to form a first refracting light, the upper part of the first refraction surface further comprising a refracting structure for refracting the light emitted from the light source. The second refraction surface receives and refracts the first refracting light to form a discharging light being emitted out of the light source package structure. Wherein, an included angle is formed between the normal vector of a portion of the second refraction surface and the central axis of the light source package structure. It is noted that the aforesaid package structure can be used in various packaging for improving refraction. In a preferred embodiment, a light source of light emitting diode (LED) is packaged by the light source package structure of the invention for enabling the light emitted from the LED to be discharged out of the package structure by a large angle after being refracted multiple times, so that the LED package structure can be adopted as a flat light source for diverse purpose applied in industry.
Abstract:
A reflective illumination device is disclosed, which is comprised of a light-guiding screen with light reflecting ability and at least a directional light source; wherein the light-guiding screen includes a reflecting surface having a semi-Fresnel lens structure arranged thereon. The semi-Fresnel lens structure, being designed basing on the principle of Fresnel lens, is the equivalent of a parabolic mirror that has spiral cut ridges for focusing light to a focal point, whereas the profile of the ridges can be a planar surface, a curved surface or the combination thereof. By arranging the reflecting surface with semi-Fresnel lens structure at the bottom of the light-guiding screen and each light source at a circumferential side wall of the light-guiding screen, the light beams emitting from each light source can be reflected out of the light-guiding screen by a specific angle as the direction of the light beams is adjusted to pour on the semi-Fresnel lens structure by a specific angle matching the configuration of the same.