Abstract:
A method for authenticating a printed document which carries barcode that encode authentication data, including word bounding boxes for each word in the original document image and data for reconstructing the original image. The printed document is scanned to generate a target document image, which is then segmented into text words. The word bounding boxes of the original and target document images are used to align the target document image. Then, each word in the original document image is compared to corresponding words in the target document image using word difference map and Hausdorff distance between them. Symbols of the original document image are further compared to corresponding symbols in the target document image using feature comparison, symbol difference map and Hausdorff distance comparison, and point matching. These various comparison results can identify alterations in the target document with respect to the original document, which can be visualized.
Abstract:
A method for compressing a bi-level document image containing text is disclosed. The document image is segmented into symbol images each representing a letter, numeral, etc. in the document. The symbol images are classified into a plurality of classes, each class being associated with a template image and a class index. Classification is done by comparing each symbol to be classified with template of existing classes, using a number of image features including zoning profiles, side profiles, topology statistics, and low-order image moments. These image features are compared using a tolerance based method to determine whether the symbol matches the template. After classification, certain classes that have few symbols classified into them may be merged with other classes. In addition, the template images of the classes are down-sampled, where the final sizes of the template images are dependent on the likelihood of confusion of the template with other templates.
Abstract:
A binary image downsampling method, including the steps of generating a gray-scale image from a binary image having a background and one or more foreground portions, locating skeleton pixels in the one or more foreground portions, manipulating values of certain foreground pixels in the gray-scale image such that the differences between the values of the skeleton pixels and the background pixels become more significant, downsampling the gray-scale image with the manipulated values of the certain foreground pixels, and generating a downsampled binary image from the downsampled gray-scale image.
Abstract:
A method for compressing a bi-level document image containing text is disclosed. The document image is segmented into symbol images each representing a letter, numeral, etc. in the document. The symbol images are classified into a plurality of classes, each class being associated with a template image and a class index. Classification is done by comparing each symbol to be classified with template of existing classes, using a number of image features including zoning profiles, side profiles, topology statistics, and low-order image moments. These image features are compared using a tolerance based method to determine whether the symbol matches the template. After classification, certain classes that have few symbols classified into them may be merged with other classes. In addition, the template images of the classes are down-sampled, where the final sizes of the template images are dependent on the likelihood of confusion of the template with other templates.
Abstract:
A method for authenticating a printed document which carries barcode that encode authentication data, including word bounding boxes for each word in the original document image and data for reconstructing the original image. The printed document is scanned to generate a target document image, which is then segmented into text words. The word bounding boxes of the original and target document images are used to align the target document image. Then, each word in the original document image is compared to corresponding words in the target document image using word difference map and Hausdorff distance between them. Symbols of the original document image are further compared to corresponding symbols in the target document image using feature comparison, symbol difference map and Hausdorff distance comparison, and point matching. These various comparison results can identify alterations in the target document with respect to the original document, which can be visualized.
Abstract:
A method and program for encoding and decoding color barcodes to increase their data capacity. The encoding steps include determining a shape and a color for each data cell to encode digital data, wherein a combination of the shape and the color for the data cell is chosen from a plurality of combinations of shapes and colors in accordance with a value of the digital data to be encoded, and coloring a subset of the plurality of pixels in each data cell in accordance with the shape and the color for the data cell determined above. The decoding steps include segmenting the data cells in a color barcode, recognizing a shape formed by a subset of pixels in each data cell and the color of the shape, and obtaining digital data from a combination of the recognized shape and color in each data cell.
Abstract:
A pair of spectacles that can automatically change its power so that a fixation region of interest (ROI) of the user is always in focus. The automatic accommodative spectacle device includes focusing elements, sensors, line of sight detector, focus engine, focusing element controller, and power supply. The line of sight detector determines the line of sight for the left and right eyes of the user using data from the sensors. The focus engine uses the lines of sight for left and right eyes to determine the user's fixation ROI. The fixation ROI is used to determine powers for the focusing elements in order to bring the fixation ROI into focus. The focusing element controller carries out the needed optical power adjustment to apply to the focusing elements. Optional light sources may be provided.
Abstract:
A document alteration detection method compares a target image with an original image using a two-step process. In the first step, the original and target images are divided into connected image components and their centroids are obtained, and the centroids of the image components in the original and target images are compared. Each centroid in the target image that is not in the original image is deemed to represent an addition, and each centroid in the original image that is not in the target image is deemed to represent a deletion. In the second step, sub-images containing the image components corresponding to each pair of matching centroids in the original and target images are compared to detect any alterations.
Abstract:
A method of generating a self-authenticating printed document and authenticating the printed document. The back side of the printed document contains 2d barcode which encode extracted features of the document content. The features are hashed into a hash code, converted to a barcode stamp element, and transformed into a hierarchical barcode stamp by repeating the stamp element. The hierarchical barcode stamp is printed as a gray background pattern on the front side of the same sheet of printed document. To authenticate the printed document, the barcodes on the back side are read to extract the document features. The features are hashed into a hash code and compared to the hash code extracted from the hierarchical barcode stamp on the front side of the document to detect any alterations of the back side barcodes. Further, the document features extracted from the front and back sides of the document are compared.
Abstract:
A pair of spectacles that can automatically change its power so that a fixation region of interest (ROI) of the user is always in focus. The automatic accommodative spectacle device includes focusing elements, sensors, line of sight detector, focus engine, focusing element controller, and power supply. The line of sight detector determines the line of sight for the left and right eyes of the user using data from the sensors. The focus engine uses the lines of sight for left and right eyes to determine the user's fixation ROI. The fixation ROI is used to determine powers for the focusing elements in order to bring the fixation ROI into focus. The focusing element controller carries out the needed optical power adjustment to apply to the focusing elements. Optional light sources may be provided.