Abstract:
A semiconductor memory device includes stacks on a substrate, each of the stacks including word lines stacked on the substrate and first and second string selection lines laterally spaced apart from each other, vertical pillars passing through the stacks, and first and second bit lines extending longitudinally in a first direction and alternatingly arranged in a second direction crossing the first direction. In a plan view, at least two adjacent ones of the first bit lines in the second direction and at least one of the second bit lines overlap each vertical pillar. A distance between a center of the vertical pillar and one of the first bit lines is different from that between the center of the vertical pillar and another of the first bit lines.
Abstract:
A positive electrode for a lithium-sulfur battery and a lithium-sulfur battery including the same have a positive electrode that includes a positive active material, a conductor, an organic binder, and an additive. The positive active material includes at least one selected from elemental sulfur, a sulfur-based compound, or a mixture thereof. The additive includes a polymer having at least one amino nitrogen group in main chains or side chains.
Abstract:
A lithium-sulfur battery includes a positive electrode having at least one positive active material selected from the group consisting of an elemental sulfur, Li2Sn (n≧1), Li2Sn (n≧1) dissolved in catholytes, an organosulfur compound, and a carbon-sulfur polymer ((C2Sx)n: x=2.5˜50, n≧2), an electrolyte having salts of an organic cation, and a negative electrode having a negative active material selected from the group consisting of a material capable of reversibly intercalating/deintercalating lithium ions, a material capable of reversibly forming a lithium-containing compound by a reaction with lithium ions, a lithium metal, and a lithium alloy.
Abstract translation:锂 - 硫电池包括具有至少一种正极活性物质的正极,所述正极活性物质选自元素硫,N 2 =(N 1 = 1) ,溶解在阴极电解液中的Li 2 N 2(n = 1),有机硫化合物和碳 - 硫聚合物((C 2 N 2) x = 2.5〜50,n> = 2),具有有机阳离子的盐和选择了负极活性物质的负极的电解质 由能够可逆地插入/脱嵌锂离子的材料组成的材料,能够通过与锂离子,锂金属和锂合金的反应可逆地形成含锂化合物的材料。
Abstract:
A method of forming a conductive polymer deposit on a substrate is disclosed. The method may include the steps of preparing a composition comprising monomers of the conductive polymer and a nitrosyl precursor, contacting the substrate with the composition so as to allow formation of nitrosyl ion on the exterior surface of the substrate, and allowing the monomer to polymerize into the conductive polymer, wherein the polymerization is initiated by the nitrosyl ion and the conductive polymer is deposited on the exterior surface of the substrate. The conductive polymer may be polypyrrole.
Abstract:
A lithium-sulfur battery having a positive electrode including a positive active material including an active sulfur, where the positive electrode comprises an electron-conductive path and an ion-conductive path, and includes active pores of the average size of up to 20 μm having both electron-conductive and ion-conductive properties, and are filled with the active sulfur during an electrochemical reaction of the battery.
Abstract:
A semiconductor memory device includes stacks on a substrate, each of the stacks including word lines stacked on the substrate and first and second string selection lines laterally spaced apart from each other, vertical pillars passing through the stacks, and first and second bit lines extending longitudinally in a first direction and alternatingly arranged in a second direction crossing the first direction. In a plan view, at least two adjacent ones of the first bit lines in the second direction and at least one of the second bit lines overlap each vertical pillar. A distance between a center of the vertical pillar and one of the first bit lines is different from that between the center of the vertical pillar and another of the first bit lines.
Abstract:
A method of forming a conductive polymer deposit on a substrate is disclosed. The method may include the steps of preparing a composition comprising monomers of the conductive polymer and a nitrosyl precursor, contacting the substrate with the composition so as to allow formation of nitrosyl ion on the exterior surface of the substrate, and allowing the monomer to polymerize into the conductive polymer, wherein the polymerization is initiated by the nitrosyl ion and the conductive polymer is deposited on the exterior surface of the substrate. The conductive polymer may be polypyrrole.
Abstract:
An electrolyte in a lithium secondary battery includes an alkyl ammonium salt having a cation of the following Formula 1, a lithium salt, and an organic solvent: wherein R1 to R4 are independently a C1 to C6 alkyl, a C2 to C6 alkenyl, or substituents thereof. The lithium secondary battery has improved cycle life, high rate characteristics, and a high energy density due to an increase of the average discharge voltage at a high rate.
Abstract:
Disclosed is a binder for a lithium-sulfur battery including a butadiene-based copolymer. The binder exhibits chemical resistance to polysulfides, is stable a battery working temperatures, forms an emulsion in organic solvents and exhibits high adherence to positive active materials and electrodes used in the lithium-sulfur battery. The disclosed binder compositions, due to their high adherence to positive active materials allow for higher relative amounts of positive active materials to be used in the battery resulting in a high capacity lithium-sulfur battery.