Abstract:
A vital sign measurement robot which automatically measures vital signs, and a control method thereof. The vital sign measurement robot includes an input unit to receive vital sign measurement instructions, an image recognition unit to detect a distance between the robot and a person, vital signs of whom are to be measured, and a measurement portion of the body of the person, when the vital sign measurement instructions are received, a control unit to move electrodes provided on hands so as to locate the electrodes at the measurement portion of the body of the person, when the distance between the robot and the person and the measurement portion of the body of the person are detected, and a vital sign measurement unit to measure a vital sign, when the electrodes are located at the measurement portion of the body of the person.
Abstract:
A robot cleaner system includes docking structure to allow a dust discharge port of a robot cleaner to come into close contact with a dust suction port of a docking station without an additional drive device. The robot cleaner system includes a robot cleaner having a dust discharge port, a docking station having a dust suction port to suction dust collected in the robot cleaner, and a docking device to perform a seesaw movement as it contacts the robot cleaner when the robot cleaner docks with the docking station, to allow the dust suction port to come into close contact with the dust discharge port. The docking device includes a link member installed in the docking station in a pivotally rotatable manner, one end having a contact portion to come into contact with the robot cleaner, and the other end having a docking portion defining the dust suction port therein.
Abstract:
A compliant joint capable of achieving passive compliance for a robot in order to prevent an injury to a human by collision with the robot. The compliant joint includes a housing, a cam member rotatably mounted in the housing, a roller spring device mounted to the cam member to be compressed and extended, a guiding member formed in the housing to guide compression and extension of the roller spring device in accordance with rotation of the cam member, and a receiving recess formed at the guiding member to engage the housing and the cam member with each other by receiving the roller spring device and release the engagement by separating from the roller spring device. Accordingly, robustness of the robot can be maintained when an impact less than a predetermined magnitude is applied, while being suddenly decreased when an impact greater than the magnitude is applied.
Abstract:
A charging apparatus used with a mobile robot has an improved charging structure so that a mobile robot is easily brought into electrical contact with a charging unit, thereby reducing manufacturing costs and preventing a charging failure. The charging unit is provided with a plurality of charging terminals which are brought into electrical contact with corresponding ones of contact terminals of the mobile robot. Each of the charging terminals includes a body and a head. A contact plate is mounted to a predetermined portion of the head to be brought into electrical contact with a corresponding one of the contact terminals.
Abstract:
Embodiments are directed to a robot hand including a frame, a link member moving relative to the frame, a joint unit provided between the frame and the link member, a drive unit supplying power to the joint unit so as to rotate the link member, and a backlash removal unit supplying constant torque to the joint unit, even if a relative position of the link member to the frame is changed as the link member is rotated.
Abstract:
A walking robot, in which driving structures of a pitch direction hip joint and a knee joint of a leg are enhanced. The walking robot includes a trunk, and a plurality of legs connected to the trunk, at least one leg among the plurality of legs includes a thigh link, a calf link provided at the lower portion of the thigh link, a pitch direction hip joint connecting the trunk and the thigh link and rotating the thigh link against the trunk in a pitch direction, and a knee joint connecting the thigh link and the calf link and rotating the calf link against the thigh link in the pitch direction. The pitch direction hip joint and the knee joint are interlocked with each other and are driven by one interlocking actuator.
Abstract:
A vital sign measurement robot which automatically measures vital signs, and a control method thereof. The vital sign measurement robot includes an input unit to receive vital sign measurement instructions, an image recognition unit to detect a distance between the robot and a person, vital signs of whom are to be measured, and a measurement portion of the body of the person, when the vital sign measurement instructions are received, a control unit to move electrodes provided on hands so as to locate the electrodes at the measurement portion of the body of the person, when the distance between the robot and the person and the measurement portion of the body of the person are detected, and a vital sign measurement unit to measure a vital sign, when the electrodes are located at the measurement portion of the body of the person.
Abstract:
A bumper structure of a cleaning robot which detects whether or not an obstacle contacts a bumper and a position of the obstacle, allows the bumper to be simply process and reduces the number of components of the cleaning robot to lower the production costs of the cleaning robot. The bumper structure includes a main body, a bumper installed on the front surface of the main body, a resistance film provided between the main body and the bumper and fixed to the main body, and a metal film provided between the main body and the bumper and fixed to the bumper such that the shape of the metal film is deformed together with the bumper and the metal film comes into contact with the resistance film when at least one obstacle contacts the bumper, so as to measure resistance values.
Abstract:
A robot joint driving apparatus has an improved structure, a robot having the same, and a cable linkage method of the robot joint driving apparatus. In the robot joint driving apparatus, lines of a cable to drive a robot joint unit are connected plural times in parallel, thereby increasing torsional stiffness of the robot joint unit. Further, a cable fixing unit is provided on an output pulley, thereby preventing slippage of the cable on the output pulley. Moreover, the overall size of the robot joint driving apparatus is reduced due to an improved power transmission structure from a driving motor to the output pulley.
Abstract:
A driving apparatus includes a driving unit, a driven unit separated from the driving unit at a separation space so as not to contact the driving unit, and rotated by rotary force generated from the driving unit, a cable connecting the driving unit and the driven unit, and to transmit the rotary force to the driven unit, and pressure units provided in the separation space, and to pressurize the cable in a direction of approaching opposite portions of the cable to each other to generate a tensile strength of the cable. Since the cable transmitting the rotary force of the driving unit to the driven unit has sufficient tensile strength, preventing the generation of slip of the cable from the driving unit and the driven unit is possible, and thus to allow the rotary force to be transmitted to the driven unit without a loss.