摘要:
A method of removing lead sulfide contained in refined molybdenite powder concentrates (major component; MoS2) is provided. More specifically, in order to solve the problems associated with a leaching method using a leaching agent that is employed for conventional hydrometallurgical process, oxygen-free inert gas is circulated in a furnace for pyrometallurgical treatment to evaporate lead sulfide at high temperature, followed by condensing process to recover lead sulfide at low temperature. The method is characterized in that, it can reduce environmental contamination and can easily recover sulfides of valuable metals such as lead, indium, zinc and the like.
摘要:
A method of removing lead sulfide contained in refined molybdenite powder concentrates (major component; MoS2) is provided. More specifically, in order to solve the problems associated with a leaching method using a leaching agent that is employed for conventional hydrometallurgical process, oxygen-free inert gas is circulated in a furnace for pyrometallurgical treatment to evaporate lead sulfide at high temperature, followed by condensing process to recover lead sulfide at low temperature. The method is characterized in that, it can reduce environmental contamination and can easily recover sulfides of valuable metals such as lead, indium, zinc and the like.
摘要:
Provided is a manufacturing method of ferromolybdenum from molybdenite concentrate, and more particularly, a manufacturing method of ferromolybdenum with copper content of 0.5% or less from molybdenite with high copper content without carrying out a separate copper removing process by putting molybdenite, aluminum metal and iron metal, in a heating furnace and reacting them at high temperature to manufacture the ferro molybdenum at the lower portion thereof, forming a slag using aluminum sulfide and iron sulfide as the main components at the upper portion thereof, and putting most of the copper (80 to 95%) existing in the molybdenite in a slag layer. The exemplary embodiment can shorten a process as compared to a metallothermic reduction (Thermit) method of the related art and reduce the consumption of a reducing agent, i.e., aluminum.
摘要:
Provided is a manufacturing method of ferromolybdenum from molybdenite concentrate, and more particularly, a manufacturing method of ferromolybdenum with copper content of 0.5% or less from molybdenite with high copper content without carrying out a separate copper removing process by putting molybdenite, aluminum metal and iron metal, in a heating furnace and reacting them at high temperature to manufacture the ferro molybdenum at the lower portion thereof, forming a slag using aluminum sulfide and iron sulfide as the main components at the upper portion thereof, and putting most of the copper (80 to 95%) existing in the molybdenite in a slag layer. The exemplary embodiment can shorten a process as compared to a metallothermic reduction (Thermit) method of the related art and reduce the consumption of a reducing agent, i.e., aluminum.
摘要:
The present invention relates to a method for manufacturing a sintered ferromolybdenum alloy, in which a mixed powder of a mill scale (a mixture of Fe, FeO and Fe2O3) as a ferrous raw material discharged from a hot rolling and forging process of the steel-making process and a molybdenum oxide powder as a molybdenum raw material is primarily reduced with a hydrogen gas at low temperature, and then is secondarily reduced with the hydrogen gas at high temperature and simultaneously is cooled in a hydrogen atmosphere to thereby obtain a ferromolybdenum alloy in the form of a powder, and subsequently the obtained ferromolybdenum alloy powder is mixed with wax (Kenolube P11) and the wax-containing mixture is compacted or pressure-molded, after which the molded product is heat-treated in a hydrogen gas atmosphere and then is cooled, thereby manufacturing a sintered ferromolybdenum alloy, and a sintered product manufactured by said method.
摘要翻译:本发明涉及一种烧结锰铁合金的制造方法,其特征在于,将从所述钢 - 铁合金的热轧和锻造工序排出的作为铁原料的铁粉(Fe,FeO,Fe 2 O 3的混合物) 作为钼原料的钼氧化物粉末主要在低温下用氢气还原,然后在高温下用氢气二次还原,同时在氢气氛中冷却,从而得到铁钼合金 将粉末形式,随后将所得的钼合金粉末与蜡(Kenolube P11)混合,将含蜡混合物压实或压模,然后在氢气气氛中对成型体进行热处理,然后 冷却,从而制造烧结的钼钼合金,以及通过所述方法制造的烧结产品。