摘要:
An expeditionary additive manufacturing (ExAM) system [10] for manufacturing metal parts [20] includes a mobile foundry system [12] configured to produce an alloy powder [14] from a feedstock [16], and an additive manufacturing system [18] configured to fabricate a part using the alloy powder [14]. The additive manufacturing system [18] includes a computer system [50] having parts data and machine learning programs in signal communication with a cloud service. The parts data [56] can include material specifications, drawings, process specifications, assembly instructions, and product verification requirements for the part [20]. An expeditionary additive manufacturing (ExAM) method for making metal parts [20] includes the steps of transporting the mobile foundry system [12] and the additive manufacturing system [18] to a desired location; making the alloy powder [14] at the location using the mobile foundry system; and building a part [20] at the location using the additive manufacturing system [18].
摘要:
The embodiments disclosed herein are directed to systems and methods for manufacturing recycled copper alloy powder particles from used or deficient copper alloy powder particles. In some embodiments, used copper alloy powder particles comprising near-surface oxygen are introduced into a microwave plasma torch. In some embodiments, the used copper alloy powder particles are heated within the microwave plasma torch to at least partially remove the oxygen and form recycled copper alloy powder particles, without melting the used copper alloy powder particles.
摘要:
Titanium alloy containing iron, that is, iron-containing titanium alloy having high strength and hardness in which iron in a composition which cannot be realized in a conventional method, is contained with no segregation, and is provided in lower cost. The α+β titanium alloy or β titanium alloy is produced by a forming process such as hot extrusion of titanium alloy powder containing 3 to 15 mass % of iron powder. The method for production of the α+β titanium alloy or β titanium alloy includes a step of mixing 3 to 15 mass % of iron powder and titanium alloy powder as the remainder, and a step of performing a forming process of hot extrusion on this powder mixture.
摘要:
A manufacturing method includes: 1) forming a melt including one or more metals; 2) introducing nanostructures into the melt at an initial volume fraction of the nanostructures; and 3) at least partially evaporating one or more metals from the melt so as to form a metal matrix nanocomposite including the nanostructures dispersed therein at a higher volume fraction than the initial volume fraction.
摘要:
The present invention relates to a technique for recovering and recycling a platinum paste. The present invention provides a method for recovering a metal powder from a platinum paste formed by mixing a solid component composed of a metal powder including at least a platinum powder or a platinum alloy powder and an organic component including at least an organic solvent, the method including removing the organic component by heating the platinum paste at a recovery temperature set in a temperature range of 300° C. or higher and 500° C. or lower. The recovered metal powder can be recycled into a platinum paste equivalent to a new product by mixing the metal powder with a solvent etc.
摘要:
A method for recycling electrode materials of lithium ion batteries, including the following steps: (1) disassembling the waste lithium ion battery to get positive electrode and negative electrode, immersing the positive electrode and/or the negative electrode into ammonia, then washing by deionized water and drying the positive electrode and/or the negative electrode; (2) sintering the dried positive electrode and/or the negative electrode, and using mechanical method to separate electrode powder material from current collector to get positive electrode powder material and/or negative electrode powder material; (3) supplementing lithium to the positive electrode powder material, then processing the positive electrode powder material by milling, spray drying and sintering to obtain regenerated positive electrode material; or processing the negative electrode powder material by milling, spray drying and sintering to obtain regenerated negative electrode material. The method has advantages of energy saving, simple operation, short processing time and less pollution.
摘要:
A method for producing a substantially spherical metal powder is described. A particulate source metal includes a primary particulate and has an average starting particle size. The particulate source metal is optionally ball milled and mixed with a binder in a solvent to form a slurry. The slurry is granulated to form substantially spherical granules, wherein each granule comprises an agglomeration of particulate source metal in the binder. The granules are debinded at a debinding temperature to remove the binder from the granules forming debinded granules. The debinded granules are at least partially sintered at a sintering temperature such that particles within each granule fuse together to form partially or fully sintered solid granules. The granules can then be optionally recovered to form a substantially spherical metal powder.
摘要:
Titanium alloy containing iron, that is, iron-containing titanium alloy having high strength and hardness in which iron in a composition which cannot be realized in a conventional method, is contained with no segregation, and is provided in lower cost. The α+β titanium alloy or β titanium alloy is produced by a forming process such as hot extrusion of titanium alloy powder containing 3 to 15 mass % of iron powder. The method for production of the α+β titanium alloy or β titanium alloy includes a step of mixing 3 to 15 mass % of iron powder and titanium alloy powder as the remainder, and a step of performing a forming process of hot extrusion on this powder mixture.
摘要:
Plastic zone extrusion may be provided. First, stock may be placed in a chamber. Then frictional heat may be generated within the stock to heat the stock to a plastic zone of the stock in the chamber. The stock may then be extruded through an orifice in the chamber after the stock is at the plastic zone.
摘要:
A composition for coating sliding or rolling or fretting or impacting members is formed by preparing a composite powder of TiB2 and BN, with a TiB2 to BN ratio ranging from 1:7 to 20:1, and a metallic matrix selected from the group consisting of nickel, chromium, iron, cobalt, aluminum, tungsten, carbon and alloys thereof
摘要翻译:用于涂布滑动或滚动或微动或冲击构件的组合物通过制备TiB 2和BN的复合粉末形成,其中TiB 2 N 2与BN的比例为1:7至20:1, 选自镍,铬,铁,钴,铝,钨,碳及其合金的金属基体