Abstract:
An inorganic EL device is provided with a substrate, a first electrode, a first insulating layer, a light emitting layer, a second insulating layer and a second electrode. The inorganic EL light emitting device is characterized in that the light emitting layer contains a quantum dot and is arranged between the first insulating layer and the second insulating layer by being brought into contact with each of the insulating layers.
Abstract:
Disclosed is an ultraviolet fluorescent material having high light emission efficiency, wherein the peak wavelength of ultraviolet light to be emitted can be controlled by having a quantum dot structure wherein a fine crystal of zinc oxide having an average diameter of 1-10 nm serves as a core, and the surface of the zinc oxide fine crystal is covered with at least one of LiGaO2, LiAlO2, NaGaO2 and NaAlO2, which has a crystal structure similar to that of the zinc oxide and low lattice mismatch and hardly suffers from structural defects, or a solid solution thereof.
Abstract:
Disclosed is an ultraviolet fluorescent material having high light emission efficiency, wherein the peak wavelength of ultraviolet light to be emitted can be controlled by having a quantum dot structure wherein a fine crystal of zinc oxide having an average diameter of 1-10 nm serves as a core, and the surface of the zinc oxide fine crystal is covered with at least one of LiGaO2, LiAlO2, NaGaO2 and NaAlO2, which has a crystal structure similar to that of the zinc oxide and low lattice mismatch and hardly suffers from structural defects, or a solid solution thereof.
Abstract:
To provide a (homogeneous) particle deposit without any impurity contamination, on which only particles with a desired size are deposited. A solution, with particles dispersed in a solvent, is jetted as a flow of fine liquid droplets from a tip part of a capillary, and the jetted fine liquid droplets are electrically charged. This flow of the droplets is introduced into a vacuum chamber through a jet nozzle, as a free jet flow. The free jet flow that travels in the vacuum chamber is introduced into an inside of a deposition chamber, inside of which is set at lower pressure, through a skimmer nozzle provided in the deposition chamber, as an ion beam. Subsequently, by an energy separation device, only particles having particular energy are selected from the electrically charged particles in the flow, and are deposited on a deposited body disposed in an inside of the deposition chamber.
Abstract:
An inorganic EL device is provided with a substrate, a first electrode, a first insulating layer, a light emitting layer, a second insulating layer and a second electrode. The inorganic EL light emitting device is characterized in that the light emitting layer contains a quantum dot and is arranged between the first insulating layer and the second insulating layer by being brought into contact with each of the insulating layers.
Abstract:
To provide a (homogeneous) particle deposit without any impurity contamination, on which only particles with a desired size are deposited. A solution, with particles dispersed in a solvent, is jetted as a flow of fine liquid droplets from a tip part of a capillary, and the jetted fine liquid droplets are electrically charged. This flow of the droplets is introduced into a vacuum chamber through a jet nozzle, as a free jet flow. The free jet flow that travels in the vacuum chamber is introduced into an inside of a deposition chamber, inside of which is set at lower pressure, through a skimmer nozzle provided in the deposition chamber, as an ion beam. Subsequently, by an energy separation device, only particles having particular energy are selected from the electrically charged particles in the flow, and are deposited on a deposited body disposed in an inside of the deposition chamber.