摘要:
A chemical mechanical polisher comprises a polishing platen capable of supporting a polishing pad, and first and second substrate carriers that are each capable of holding a substrate against the polishing pad. First and second slurry dispensers, each comprise (i) an arm comprising a pivoting end and a distal end, (ii) at least one slurry dispensing nozzle on the distal end, and (iii) a dispenser drive capable of rotating the arm about the pivoting end to swing the slurry dispensing nozzle at the distal end to dispense slurry across the polishing platen.
摘要:
A composition that may be an electronic circuit element includes a metal nanoparticle, a silicone modified polyacrylate compound and a solvent. The silicone modified polyacrylate compound may be a silicone modified polyacrylate compound with at least one organic functional moiety. A method of forming conductive features on a substrate includes depositing a composition containing metal nanoparticles, a silicone modified polyacrylate compound and a solvent onto a substrate, and heating the deposited composition to a temperature from about 100° C. to about 200° C.
摘要:
A transfer printing method including applying a curable sublimation toner having at least one curable component and at least one sublimation colorant in a desired pattern onto a transfer substrate to form an image on the transfer substrate at a first temperature which is below the sublimation temperature of the sublimation colorant; wherein the curable sublimation toner is a conventional toner or a chemical toner; and wherein the curable sublimation toner includes at least one curable amorphous resin and optionally, a crystalline resin; curing the image on the transfer substrate; and optionally, bringing the transfer substrate into contact with a final image-receiving substrate, optionally applying pressure, and heating to a second temperature which is sufficient to cause the sublimation colorant to sublime and form a permanent image on the final image-receiving substrate.
摘要:
The present teachings describe a process for converting a HOGaPc Type I polymorph to the HOGaPc Type V polymorph. The process includes obtaining a slurry comprising hydroxy gallium phthalocyanine (HOGaPc) Type I polymorph. The slurry is mixed at a resonant frequency of the slurry by applying a low frequency acoustic field for a time sufficient to convert the HOGaPc Type I polymorph to the HOGaPc Type V polymorph.
摘要:
The present disclosure provides methods and devices for identifying category misplacement. In one embodiment, an example device obtains a word frequency of each respective word in a product title under a current category, calculates an overall word frequency of the product title under the current category based on the word frequency of each respective word under the current category, and compares the overall word frequency of the product title with a threshold of the current category to determine an existence of category misplacement. The techniques can accurately identify category misplacement and reduce the probability of missing identifying category misplacement. The techniques also require less system resources and improve calculation efficiency.
摘要:
A curable sublimation marking material including at least one curable component and at least one sublimation colorant. Also disclosed is a transfer printing method including applying a curable sublimation marking material in a desired pattern onto a transfer substrate to form an image on the transfer substrate at a first temperature which is below the sublimation temperature of the sublimation colorant; wherein the curable sublimation marking material comprises at least one curable component and at least one sublimation colorant; curing the image on the transfer substrate; and optionally, bringing the transfer substrate into contact with a final image-receiving substrate, optionally applying pressure, and heating to a second temperature which is sufficient to cause the sublimation colorant to sublime and form a permanent image on the final image-receiving substrate.
摘要:
A multi-disk fault-tolerant system, a method for generating a check block, and a method for recovering a data block are provided. The multi-disk fault-tolerant system includes a disk array and a calculation module connected through a system bus, the disk array is formed by p disks, and a fault-tolerant disk amount of the disk array is q; data in the disk array is arranged according to a form of a matrix M of (m+q)×p, where m is a prime number smaller than or equal to p−q; in the matrix M, a 0th row is virtual data blocks being virtual and having values being 0, a 1st row to an (m−1)th row are data blocks, an mth row to an (m+q−1)th row are check blocks. Therefore, during a procedure of generating the check block and recovering the data block in the multi-disk fault-tolerant system, calculation complexity is lowered.
摘要:
A transfer printing method including applying a curable sublimation ink having at least one curable component and at least one sublimation colorant in a desired pattern onto a transfer substrate to form an image on the transfer substrate at a first temperature which is below the sublimation temperature of the sublimation colorant; curing the image on the transfer substrate; and optionally, bringing the transfer substrate into contact with a final image-receiving substrate, optionally applying pressure, and heating to a second temperature which is sufficient to cause the sublimation colorant to sublime and form a permanent image on the final image-receiving substrate.
摘要:
A transfer printing method including applying a curable sublimation toner having at least one curable component and at least one sublimation colorant in a desired pattern onto a transfer substrate to form an image on the transfer substrate at a first temperature which is below the sublimation temperature of the sublimation colorant; wherein the curable sublimation toner is a conventional toner or a chemical toner; and wherein the curable sublimation toner includes at least one curable amorphous resin and optionally, a crystalline resin; curing the image on the transfer substrate; and optionally, bringing the transfer substrate into contact with a final image-receiving substrate, optionally applying pressure, and heating to a second temperature which is sufficient to cause the sublimation colorant to sublime and form a permanent image on the final image-receiving substrate.