摘要:
Provided are a three-dimensional flash memory using a fringing effect and a method of manufacturing the same. A through hole is formed through a plurality of gate electrodes vertically stacked on a substrate, and the interior of the through hole is filled with a tunneling insulating layer or an active region. Therefore, a charge storage layer is not formed in the through hole, but is formed outside of the through hole. The charge storage layer is formed in an intercell insulating layer filling a gap between the gate electrodes. When a fringing electric field is applied, the electric charges of the active region are trapped in the charge storage layer through the intercell insulating layer.
摘要:
Provided are a semiconductor device and a methods of forming and operating the semiconductor device. The semiconductor device may include active pillars extending from a semiconductor substrate and disposed two dimensionally disposed on the semiconductor substrate, upper interconnections connecting the active pillars along one direction, lower interconnections crossing the upper interconnections and disposed between the active pillars, word lines crossing the upper interconnections and disposed between the active pillars, and data storage patterns disposed between the word lines and the active pillars.
摘要:
Methods of manufacturing a semiconductor integrated circuit using selective disposable spacer technology and semiconductor integrated circuits manufactured thereby: The method includes forming a plurality of gate patterns on a semiconductor substrate. Gap regions between the gate patterns include first spaces having a first width and second spaces having a second width greater than the first width. Spacers are formed on sidewalls of the second spaces, and spacer layer patterns filling the first spaces are also formed together with the spacers. The spacers are selectively removed to expose the sidewalls of the first spaces. As a result, the semiconductor integrated circuit includes wide spaces enlarged by the removal of the spacers and narrow and deep spaces filled with the spacer layer patterns.
摘要:
Provided are a semiconductor device and a methods of forming and operating the semiconductor device. The semiconductor device may include active pillars extending from a semiconductor substrate and disposed two dimensionally disposed on the semiconductor substrate, upper interconnections connecting the active pillars along one direction, lower interconnections crossing the upper interconnections and disposed between the active pillars, word lines crossing the upper interconnections and disposed between the active pillars, and data storage patterns disposed between the word lines and the active pillars.
摘要:
Provided are a semiconductor device and a methods of forming and operating the semiconductor device. The semiconductor device may include active pillars extending from a semiconductor substrate and disposed two dimensionally disposed on the semiconductor substrate, upper interconnections connecting the active pillars along one direction, lower interconnections crossing the upper interconnections and disposed between the active pillars, word lines crossing the upper interconnections and disposed between the active pillars, and data storage patterns disposed between the word lines and the active pillars.
摘要:
Methods of manufacturing a semiconductor integrated circuit using selective disposable spacer technology and semiconductor integrated circuits manufactured thereby: The method includes forming a plurality of gate patterns on a semiconductor substrate. Gap regions between the gate patterns include first spaces having a first width and second spaces having a second width greater than the first width. Spacers are formed on sidewalls of the second spaces, and spacer layer patterns filling the first spaces are also formed together with the spacers. The spacers are selectively removed to expose the sidewalls of the first spaces. As a result, the semiconductor integrated circuit includes wide spaces enlarged by the removal of the spacers and narrow and deep spaces filled with the spacer layer patterns.
摘要:
Provided are a three-dimensional flash memory using a fringing effect and a method of manufacturing the same. A through hole is formed through a plurality of gate electrodes vertically stacked on a substrate, and the interior of the through hole is filled with a tunneling insulating layer or an active region. Therefore, a charge storage layer is not formed in the through hole, but is formed outside of the through hole. The charge storage layer is formed in an intercell insulating layer filling a gap between the gate electrodes. When a fringing electric field is applied, the electric charges of the active region are trapped in the charge storage layer through the intercell insulating layer.
摘要:
Methods of manufacturing a semiconductor integrated circuit using selective disposable spacer technology and semiconductor integrated circuits manufactured thereby. The method includes providing a semiconductor substrate; forming gate patterns on the semiconductor substrate, wherein a first space and a second space wider than the first space are disposed between the gate patterns; forming a first impurity region in the semiconductor substrate under the first space and forming a second impurity region in the semiconductor substrate under the second space; forming insulation spacers on sidewalls of the gate patterns, wherein a portion of the second impurity region is exposed and the first impurity region is covered with the insulation spacers; etching the insulation spacers, wherein an opening width of the second impurity region is enlarged and wherein the etching is carried out with a wet etching process; and forming an interlayer insulating layer on the overall structure including the gate patterns.
摘要:
Methods of manufacturing a semiconductor integrated circuit using selective disposable spacer technology and semiconductor integrated circuits manufactured thereby. The method includes providing a semiconductor substrate; forming gate patterns on the semiconductor substrate, wherein a first space and a second space wider than the first space are disposed between the gate patterns; forming a first impurity region in the semiconductor substrate under the first space and forming a second impurity region in the semiconductor substrate under the second space; forming insulation spacers on sidewalls of the gate patterns, wherein a portion of the second impurity region is exposed and the first impurity region is covered with the insulation spacers; etching the insulation spacers, wherein an opening width of the second impurity region is enlarged and wherein the etching is carried out with a wet etching process; and forming an interlayer insulating layer on the overall structure including the gate patterns.
摘要:
Methods of manufacturing a semiconductor integrated circuit using selective disposable spacer technology and semiconductor integrated circuits manufactured thereby: The method includes forming a plurality of gate patterns on a semiconductor substrate. Gap regions between the gate patterns include first spaces having a first width and second spaces having a second width greater than the first width. Spacers are formed on sidewalls of the second spaces, and spacer layer patterns filling the first spaces are also formed together with the spacers. The spacers are selectively removed to expose the sidewalls of the first spaces. As a result, the semiconductor integrated circuit includes wide spaces enlarged by the removal of the spacers and narrow and deep spaces filled with the spacer layer patterns.