摘要:
A process for determining mass spectrum by time of flight, wherein a source comprising a solid surface is subjected to the action of an electric field between this surface and an electrode, this provoking the simultaneous emission of electrons and of negative ions released by spontaneous desorption; the electrons and negative ions are received successively by a detector to determine the mass spectrum as a function of the differences between the instants of reception of the electrons and the negative ions.
摘要:
The present invention enhances the laser desorption of biological molecular ions from surfaces by creating a surface localized MALDI particle matrix by ion implantation of low energy ionized clusters (gold, aluminum, etc.) or chemically derivatized clusters into the near surface region of the sample. MALDI analysis of the intact biomolecules on the surface or within a narrow subsurface region defined by the implantation range of the ions can then be performed by laser desorption into a mass spectrometer or, in a preferred embodiment, into a combined ion mobility orthogonal time of flight mass spectrometer.
摘要:
The present invention enhances the laser desorption of biological molecular ions from surfaces by creating a surface localized MALDI particle matrix by ion implantation of low energy ionized clusters (gold, aluminum, etc.) or chemically derivatized clusters into the near surface region of the sample. MALDI analysis of the intact biomolecules on the surface or within a narrow subsurface region defined by the implantation range of the ions can then be performed by laser desorption into a mass spectrometer or, in a preferred embodiment, into a combined ion mobility orthogonal time of flight mass spectrometer.
摘要:
The spectrometer includes an ion source, an ion mirror receiving the ions issued from the source, a first detector placed so as to receive the ions reflected by the mirror and a second detector disposed behind the mirror, all these components forming an assembly of axial symmetry. A reflex spectrum of the ions reflected by the mirror and received by the first detector can be obtained in parallel with a spectrum of the neutral species which may have appeared as a result of in flight decompositions of metastable ions and which are received by the second detector. This arrangement is particularly adapted to the study of metastable ions, processing means being provided for producing correlated reflex spectra where the contributions of ion fragments corresponding to received neutral fragments is enhanced.