Abstract:
A method, in a power supply controller, of responding to an increase in current through a terminal of the power supply controller, is disclosed. The method includes regulating the terminal to a first voltage level and sensing a magnitude of a first current through the terminal while the controller is regulating the terminal to the first voltage level. The method also includes providing an initial response by the power supply controller in response to the magnitude of the first current exceeding a first threshold current level and then regulating the terminal to a second voltage level after the magnitude of the first current exceeds the first threshold current level. The magnitude of a second current through the terminal is sensed while the controller is regulating the terminal to the second voltage level and the controller determines a final response based on the magnitude of the second current.
Abstract:
An example power supply controller includes a switch duty cycle controller coupled to receive a feedback signal and a duty cycle adjust signal. The switch duty cycle controller is coupled to generate a drive signal coupled to control switching of a switch, which is coupled to an energy transfer element, to regulate energy delivered from an input of a power supply to an output of the power supply. The power supply controller also includes a gain selector circuit coupled to receive an input voltage signal, which is representative of an input voltage to the power supply, to generate the duty cycle adjust signal received by the switch duty cycle controller. The duty cycle of the drive signal to be varied in response to a plurality of linear functions over a range of values of the input voltage signal.
Abstract:
Compositions, kits and methods for promoting diabetic wound healing are based on the discovery that SDF-1α specifically upregulates expression of E-selectin in mature endothelial cells (EC), leading to an increase in EC-endothelial progenitor cell (EPC) adhesion and EPC homing. Methods for promoting healing of a wound in a diabetic subject include providing a therapeutically effective amount of a composition including E-selectin protein or a nucleic acid encoding E-selectin protein, and optionally, an agent that specifically upregulates E-selectin expression (e.g., SDF-1α). The methods can also include administering hyperbaric oxygen treatment to the subject. Administering the composition to the subject results in migration of bone marrow-derived progenitor cells to the wound, accelerated wound healing, and upregulation of E-selectin expression in the subject.
Abstract:
An example controller for a power supply includes a drive signal generator and a compensation circuit. The drive signal generator is to be coupled to control switching of a switch included in the power supply to regulate an output voltage of the power supply in response to a sensed output voltage such that the output voltage of the power supply is greater than an input voltage of the power supply. The compensation circuit is coupled to the drive signal generator and is also coupled to output an offset current to adjust the sensed output voltage in response to the input voltage of the power supply.
Abstract:
An apparatus and method of providing a pulse width modulated signal that is responsive to a current are disclosed. A circuit according to aspects of the present invention includes a capacitor to convert a first current to a first voltage on the capacitor during a first time duration and to discharge a second current from the capacitor to change the first voltage to a second voltage during a second time duration. A comparator is also included and is coupled to an output of the capacitor to compare a voltage on the capacitor to a reference voltage during the second time duration to change a pulse width of a periodic output signal in response to an input current.
Abstract:
An apparatus and method of providing a pulse width modulated signal that is responsive to a current are disclosed. A circuit according to aspects of the present invention includes a capacitor to convert a first current to a first voltage on the capacitor during a first time duration and to discharge a second current from the capacitor to change the first voltage to a second voltage during a second time duration. A comparator is also included and is coupled to an output of the capacitor to compare a voltage on the capacitor to a reference voltage during the second time duration to change a pulse width of a periodic output signal in response to an input current.
Abstract:
An apparatus and method of providing a pulse width modulated signal that is responsive to a current are disclosed. A circuit according to aspects of the present invention includes a capacitor to convert a first current to a first voltage on the capacitor during a first time duration and to discharge a second current from the capacitor to change the first voltage to a second voltage during a second time duration. A comparator is also included and is coupled to an output of the capacitor to compare a voltage on the capacitor to a reference voltage during the second time duration to change a pulse width of a periodic output signal in response to an input current.
Abstract:
A method is disclosed to add functionality to a terminal of a high voltage integrated circuit without the penalty of additional high voltage circuitry. The benefit is that alternative modes of operation can be selected for testing, trimming parameters of the integrated circuit, or any other purpose without the cost of an additional terminal. In one embodiment, ordinary low voltage circuitry monitors the voltage on the terminal that normally is exposed to high voltage. The configuration of a simple voltage detector and an ordinary latch allows easy entry into the test and trimming mode when the integrated circuit is not in the intended application, but prohibits entry into the test and trimming mode when the integrated circuit operates in the intended application.
Abstract:
A method is disclosed to add functionality to a terminal of a high voltage integrated circuit without the penalty of additional high voltage circuitry. The benefit is that alternative modes of operation can be selected for testing, trimming parameters of the integrated circuit, or any other purpose without the cost of an additional terminal. In one embodiment, ordinary low voltage circuitry monitors the voltage on the terminal that normally is exposed to high voltage. The configuration of a simple voltage detector and an ordinary latch allows easy entry into the test and trimming mode when the integrated circuit is not in the intended application, but prohibits entry into the test and trimming mode when the integrated circuit operates in the intended application.