Abstract:
Disclosed are structures and methods for optical isolation based on tandem phase modulators in a long interferometer that advantageously provides low-loss, broadband isolation in a photonic integrated circuit without requiring special materials or fabrication steps.
Abstract:
Disclosed herein are methods, structures, apparatus and devices to integrate polarization filters and power tap couplers on planar photonic circuits that advantageously provide a lower insertion loss to an optical signal and improved optical bandwidth as compared with contemporary designs wherein these two functions are implemented separately.
Abstract:
Disclosed are structures and methods directed to waveguide structures exhibiting improved device performance including improved attenuation of scattered light and/or transverse magnetic modes. In an illustrative embodiment according to the present disclosure, a rib waveguide structure including a rib overlying a slab waveguide (or superimposed thereon) is constructed wherein the slab waveguide is heavily doped at a distance from the rib which has a very low overlap with rib guided modes. Advantageously, such doping may be of the P-type or of the N-type, and dopants could be any of a number of known ones including—but not limited to—boron, phosphorous, etc.—or others that increase optical propagation loss. As may be appreciated, the doped regions advantageously absorb scattered light which substantially improves the structure's performance.Alternative illustrative embodiments of structures according to the present disclosure will include a metal deposited upon the slab waveguide at a distance from the rib such that scattered light is absorbed and the structure's performance is likewise enhanced.
Abstract:
Disclosed herein are methods, structures, apparatus and devices that improve the control and/or controllability of a group of Mach-Zehnder Interferometer modulators. Advantageously, such control may be implemented with optical tuning elements shared among all of the modulators, or with separate optical tuning elements operated through the effect of a set of common signals. Accordingly implementations according to one aspect of the present disclosure provides a significantly simplified configuration—where the extinction ratios of all modulators within the group are controlled jointly—in sharp contrast to those configuration(s) wherein all modulators are individually controlled.
Abstract:
Disclosed are structures and methods for a monolithic silicon (Si) coherent transceiver with integrated laser and gain elements wherein an InP chip is bonded to the Si chip in a recess formed in that Si chip.
Abstract:
Disclosed are designs and methods of fabrication of silicon carrier-depletion based electro-optical modulators having doping configurations that produce modulators exhibiting desirable modulation efficiency, optical absorption loss and bandwidth characteristics. The disclosed method of fabrication of a modulator having such doping configurations utilizes counter doping to create narrow regions of relatively high doping levels near a waveguide center.
Abstract:
Disclosed herein are methods, structures, apparatus and devices for the termination of unused waveguide ports in planar photonic integrated circuits with doped waveguides such that free-carrier absorption therein may advantageously absorb any undesired optical power resulting in a significant reduction of stray light and resulting reflections.
Abstract:
Methods, structures, apparatus, devices, and materials to facilitate the integration of electronic integrated circuits (chips) including drivers, amplifiers, microcontrollers, etc., onto/into photonic integrated circuits (chips) using recessed windows exhibiting controlled depths onto/into the photonic chip. The electronic chips are positioned into the recessed windows and electrical connections between the electronic chips and the photonic chip are achieved by flip-chip techniques with predefined traces at a bottom of the recessed windows or direct wire bonding. Advantageously, this integration may be performed on a wafer level for large-volume productions.
Abstract:
Disclosed herein are methods, structures, and devices that compensates for modulator loss and modulation inefficiencies introduced by mask misalignments in opposite oriented pn type junction modulators. More specifically, Mach-Zehnder type optical modulators are disclosed wherein both arms in the MZI modulator are arranged in a push-pull configuration and configured to experience pn type junctions of two orientations wherein both arms further configured to experience the same length of waveguide with a pn type junction of each orientation.
Abstract:
Disclosed are structures and methods for a monolithic silicon (Si) coherent transceiver with integrated laser and gain elements wherein an InP chip is bonded to the Si chip in a recess formed in that Si chip.