Abstract:
A preparation device has a chamber, molten metal containers, a rotatable base in the chamber and having a deposition substrate, laser sets generating a dual-pulse laser, a base controller and a data collection control unit. The containers communicate with the chamber and each has a pulse pressurization apparatus pressing the molten metal into the chamber. The laser sets correspond to the containers such that beams of an emitted dual-pulse laser bombard the pulsed droplets, plasmas are generated and are sputtered and deposited on the substrate forming a multi-element alloy thin film. The unit collects base temperature and displacement information, and controls the pressurization frequency of the pulse pressurization apparatus, and the emission frequency and energy of the dual-pulse laser of the laser sets controlling the frequency and energy of the dual-pulse laser bombarding the corresponding pulsed droplets. The base controller controls the base temperature, rotation and movement.
Abstract:
The present disclosure proposes a flow guide device for a discharge cavity having a symmetrical configuration and including two pairs of electrodes; the flow guide device comprises two rotors which correspond to one pair of the two pairs of electrodes, respectively, installed positions of which are symmetrical about a symmetrical plane of the discharge cavity and is beneath the electrodes, a rotational axis of which is parallel to an axial direction of the electrodes which is parallel to a base plane of the discharge cavity, and the two rotors have opposite rotation directions and identical rotation speeds. The flow guide device further comprises a spoiler plate and a flow guide plate so that the discharge gas flow passes through the discharge cavity in a manner of high speed and uniform cycling when flowing through the discharge region. Thus, the discharge quality is guaranteed so as to improve the energy and reliability of the laser.