Abstract:
The present disclosure proposes a flow guide device for a discharge cavity having a symmetrical configuration and including two pairs of electrodes; the flow guide device comprises two rotors which correspond to one pair of the two pairs of electrodes, respectively, installed positions of which are symmetrical about a symmetrical plane of the discharge cavity and is beneath the electrodes, a rotational axis of which is parallel to an axial direction of the electrodes which is parallel to a base plane of the discharge cavity, and the two rotors have opposite rotation directions and identical rotation speeds. The flow guide device further comprises a spoiler plate and a flow guide plate so that the discharge gas flow passes through the discharge cavity in a manner of high speed and uniform cycling when flowing through the discharge region. Thus, the discharge quality is guaranteed so as to improve the energy and reliability of the laser.
Abstract:
The present disclosure provides an excimer laser system. A master oscillator chamber may generate laser pulses with a narrowed line width and a small energy by means of a line width narrowing module, as a seed light. The seed light is refracted by a master oscillator wavefront engineering box and then incident into a power amplifier chamber through a beam splitting system. The beam splitting system, a first high reflectance mirror, a second high reflectance mirror and a third high reflectance mirror may constitute a quadrilateral annular optical path, The power amplifier chamber may have a first pair of Brewster windows and a second pair of Brewster windows, wherein the first pair of Brewster windows is located in a first optical path of the annular optical path along with a discharging electrode of the power amplifier chamber, and the second pair of Brewster windows is located in a second optical path of annular optical path which is parallel to a first amplification optical path. The present disclosure reduces the length of a ring cavity of an excimer laser system with a ring cavity structure, increasing the amplification times and achieving a deeper gain saturation amplification than a traditional structure, thereby improving the output characteristic of the excimer laser system.