Abstract:
There is provided a method for analyzing optical properties of an object, including utilizing a light illumination having a plurality of amplitudes, phases and polarizations of a plurality of wavelengths impinging from the object, obtaining modified illuminations corresponding to the light illumination, applying a modification to the light illumination thereby obtaining a modified light illumination, analyzing the modified light illumination, obtaining a plurality of amplitudes, phases and polarizations maps of the plurality of wavelengths, and employing the plurality of amplitudes, phases and polarizations maps for obtaining output representing the object's optical properties. An apparatus for analyzing optical properties of an object is also provided.
Abstract:
Apparatus and methods are described for optically analyzing an object having a plurality of layers, without needing to use a reference mirror. An extended broadband light source produces light, and directs the light toward the object, such as to create respective images of the light source on the respective layers of the object. An imaging system gathers light that is reflected from a point of the object into a conjugate point in the detector. The detector determines the thicknesses of the plurality of layers at the point of the object by analyzing, within the gathered light, interference between light reflected from the plurality of layers of the object at the point. Other applications are also described.
Abstract:
A system (10) for measuring a physical characteristic of an object (11) using dual path, two-dimensional Optical Coherence Tomography (OCT) includes an extended broadband light source (13) producing an incident light beam (14) and an interferometer (15) having a beam splitter (16) that splits the incident beam into first and second component (17, 18) beams and directs the second component beam (18) on to a moveable mirror (19) for creating an optical path difference between the first component beam (17) and a reflection (20) of the second component beam. A focusing lens (21) having a focal plane (22) focuses the first component beam and the reflection of the second component beam to form a fringe pattern (23) on the focal plane, and a configurable imaging system (25) images the fringe pattern on to a plane (12) of the object to allow two-dimensional measurement of the object without spatial scanning.
Abstract:
There is provided a method for analyzing optical properties of an object, including utilizing a light illumination having a plurality of amplitudes, phases and polarizations of a plurality of wavelengths impinging from the object, obtaining modified illuminations corresponding to the light illumination, applying a modification to the light illumination thereby obtaining a modified light illumination, analyzing the modified light illumination, obtaining a plurality of amplitudes, phases and polarizations maps of the plurality of wavelengths, and employing the plurality of amplitudes, phases and polarizations maps for obtaining output representing the object's optical properties. An apparatus for analyzing optical properties of an object is also provided.
Abstract:
A system (10) for measuring a physical characteristic of an object (11) using dual path, two-dimensional Optical Coherence Tomography (OCT) includes an extended broadband light source (13) producing an incident light beam (14) and an interferometer (15) having a beam splitter (16) that splits the incident beam into first and second component (17, 18) beams and directs the second component beam (18) on to a moveable mirror (19) for creating an optical path difference between the first component beam (17) and a reflection (20) of the second component beam. A focusing lens (21) having a focal plane (22) focuses the first component beam and the reflection of the second component beam to form a fringe pattern (23) on the focal plane, and a configurable imaging system (25) images the fringe pattern on to a plane (12) of the object to allow two-dimensional measurement of the object without spatial scanning.