Abstract:
An optical coherence tomography (OCT) image composed of a plurality of A-scans of a structure is analysed by defining, for each A-scan, a set of neighbouring A-scans surrounding the A-slices scan. Following an optional de-noising step, the neighbouring A-scans are aligned in the imaging direction, then a matrix X is formed from the aligned A-scans, and matrix completion is performed to obtain a reduced speckle noise image.
Abstract:
A method and system are proposed to obtain a reduced speckle noise image of a subject from optical coherence tomography (OCT) image data of the subject. The cross sectional images each comprise a plurality of scan lines obtained by measuring the time delay of light reflected, in a depth direction, from optical interfaces within the subject. The method comprises two aligning steps. First the cross sectional images are aligned, then image patches of the aligned cross sectional images are aligned to form a set of aligned patches. An image matrix is then formed from the aligned patches; and matrix completion is applied to the image matrix to obtain a reduced speckle noise image of the subject.
Abstract:
A method is presented to obtain, from a retinal image, data characterizing the optic cup, such as data indicating the location and/or size of the optic cup in relation to the optic disc. A disc region of the retinal image of an eye, is expressed as a weighted sum of a plurality of pre-existing “reference” retinal images in a library, with the weights being chosen to minimize a cost function. The data characterizing the cup of the eye is obtained from cup data associated with the pre-existing disc images and the corresponding weights. The cost function includes (i) a construction error term indicating a difference between the disc region of the retinal image and a weighted sum of the reference retinal images, and (ii) a cost term, which may be generated using a weighted sum over the reference retinal images of a difference between the reference retinal images and the disc region of the retinal image.
Abstract:
The present disclosure generally relates to automated method and system for vision assessment of a subject. The method comprises: determining a set of test patterns for the subject based on a preliminary assessment of an eye of the subject; displaying the set of test patterns sequentially to the subject; collecting data on the subject's gaze in response to each test pattern displayed to the subject; and assessing vision functionality of the subject based on the collected gaze data.
Abstract:
A method of assessing the quality of an retinal image (such as a fundus image) includes selecting at least one region of interest within a retinal image corresponding to a particular structure of the eye (e.g. the optic disc or the macula), and a quality score is calculated in respect of the, or each, region-of-interest. Each region of interest is typically one associated with pathology, as the optic disc and the macula are. Optionally, a quality score may be calculated also in respect of the eye as a whole (i.e. over the entire image, if the entire image corresponds to the retina).
Abstract:
The present disclosure generally relates to an automated method and system for generating a three-dimensional (3D) representation of a skin structure of a subject. The method comprises: acquiring a plurality of two-dimensional (2D) cross-sectional images of the skin structure, specifically, using optical coherence tomography (OCT) technique; computing a cost for each 2D cross-sectional image based on a cost function, the cost function comprising an edge-based parameter and a non-edge-based parameter; constructing a 3D graph from the 2D cross-sectional images; and determining a minimum-cost closed set from the 3D graph based on the computed costs for the 2D cross-sectional images, wherein the 3D representation of the skin structure is generated from the minimum-cost closed set.
Abstract:
A method and apparatus for aligning a two-dimensional eye image with a predefined axis by rotation at a rotation angle are disclosed, the method comprising deriving the rotation angle and a de-noised image, which minimises a cost function comprising (i) a complexity measure of the de-noised image and (ii) magnitude of a noise image obtained by rotating the first image by the rotation angle and subtracting the de-noised image. Related methods and apparatus are disclosed for aligning a plurality of images with the predefined axis before alignments in transverse and parallel directions, as well as averaging the aligned images, in further embodiments, a method and apparatus of determining angle closure are disclosed, using a database of reference eye images with and without eye closure, the method comprising obtaining a two dimensional eye image, determining respective weights for each reference images that minimise a cost function comprising the difference between the received image and sum of the weighted reference images; identifying at least one of the first and second reference images having least differences with received image and determining whether the eye exhibits eye closure based on the received image being closer to first or second weighted reference images.
Abstract:
The present invention relates to a system for displaying a video image to a user having a visual impairment. The system comprises a video camera, a data storage device, a processor and an image display device for displaying processed images in a display region. The processor is operative to perform at least one of the operations of (i) including in the display region, a marker at a location offset from a centre of the display region, whereby if the user, who suffers from blurred vision at the centre of the user's visual field, looks at the marker, the user sees the captured image in focus; or (ii) deforming a portion of the captured image by a correction matrix, whereby, upon displaying the processed images by the display device, the correction matrix corrects a deformation in a corresponding portion of the visual field of the user due to the visual impairment.