Abstract:
According to embodiments of the present invention, a magnetoresistance device is provided. The magnetoresistance device includes a hard magnetic layer and a soft magnetic layer arranged one over the other, wherein the soft magnetic layer includes a stack structure, the stack structure including a first layer and a second layer arranged one over the other, wherein the first layer has a first damping factor and the second layer has a second damping factor, the first damping factor is selected to be lower than the second damping factor.
Abstract:
According to embodiments of the present invention, a magnetoresistive device is provided. The magnetoresistive device includes at least two ferromagnetic soft layers, wherein the at least two ferromagnetic soft layers have different ranges of magnetization switching frequencies. Further embodiments provide a magnetoresistive device including at least two oscillating ferromagnetic structures, wherein ranges of operating current amplitudes at which oscillations are induced for the at least two oscillating ferromagnetic structures are different. According to further embodiments of the present invention, writing methods for the magnetoresistive devices are provided.
Abstract:
According to embodiments of the present invention, a magnetoresistive device is provided. The magnetoresistive device includes at least two ferromagnetic soft layers, wherein the at least two ferromagnetic soft layers have different ranges of magnetization switching frequencies. Further embodiments provide a magnetoresistive device including at least two oscillating ferromagnetic structures, wherein ranges of operating current amplitudes at which oscillations are induced for the at least two oscillating ferromagnetic structures are different. According to further embodiments of the present invention, writing methods for the magnetoresistive devices are provided.