Abstract:
The present disclosure provides an electric thrust reverser system for an aircraft engine nacelle, including a mechanism for actuating a thrust reverser mechanism. The actuating mechanism includes a first drive cylinder and a second drive cylinder. Each cylinder includes a mechanical connection casing, a primary lock (8) and a movable rod secured to a point connected to the associated thrust reverser mechanism. A motor-actuated drive unit is mechanically connected, via flexible shafts, to the mechanical connection casings of each drive cylinder and set in motion by the command of a control unit via an electrical connection. A tertiary lock is disposed for securing the associated thrust reverser mechanism, to a fixed structure of the nacelle.
Abstract:
An actuating assembly for an aircraft engine thrust reverser includes a drive shaft bearing a master pinion; a ball screw bearing a slave pinion engaging with the master pinion; a nut capable of translating over the ball screw as a result of the rotation of the ball screw; an extension tube rigidly secured to the nut and a lock assembly to block the rotation of the drive shaft in a so-called direct jet position of the reverser. The extension tube includes, at its free end, a member for connecting to a portion of the reverser prior to being actuated. In particular, the lock assembly includes an abutment secured to the drive shaft, and a cotter moveable between a locking position and an unlocking position. The reduction ratio (R) between the slave and master pinions is even.
Abstract:
An aircraft engine nacelle is provided that includes a fixed front frame, a thrust reverser cowling mounted to slide with respect to the front frame between a direct-jet position and a reversed-jet position, a variable-geometry nozzle positioned in a downstream continuation of the reverser cowling, thrust-reversal jacks interposed between the front frame and the thrust-reverser cowling, adaptive nozzle jacks interposed between said thrust reverser cowling and the variable-geometry nozzle, drive shafts mounted on the front frame, transmission shafts extending along the thrust reverser cowling as far as the variable-geometry nozzle jacks, and mechanical means for coupling said transmission shafts to said drive shafts, and means for locking rotation of said transmission shafts before decoupling of the transmission shafts from their respective drive shafts, and when the decoupling is completed.
Abstract:
The present disclosure relates to a double-acting linear actuator for moving an inner part and an outer part of a cowl relative to a fixed frame. The linear actuator includes a first tubular body housing a first drive shaft and a second tubular body housing a second drive shaft. In particular, the first and second tubular bodies are mounted in series by the second drive shaft which is mounted on the first tubular body. The second drive shaft translates the second tubular body relative to the first tubular body when a lock of the first tubular body is in a locked position, and the first drive shaft translates both the first tubular and second tubular bodies when the lock is in an unlocked position.
Abstract:
A nacelle for an aircraft engine is provided that includes a thrust reverser cowling slideably mounted between a direct jet position and a reversed jet position, an outlet jet pipe nozzle with variable cross-section positioned in a downstream extension of the reverser cowling, and means for respectively actuating the cowling and the nozzle. The nozzle is slideably mounted on the thrust reverser cowling, and the means includes at least one actuator for actuating said thrust reverser cowling, at least one driving pinion rotatably mounted on a fixed structure of said nacelle, and at least one rack for actuating the nozzle, secured to the nozzle and meshing with the driving pinion when the thrust reverser cowling is in the direct jet position, and escaping from this pinion when said reverser cowling is in the reversed jet position.