Abstract:
An automatic shift device for an automated transmission for a vehicle includes a rotation shaft, a clutch ring, a clutch hub, a sleeve, a dog clutch portion, a shaft moving apparatus, and a control portion. The control portion includes a push force reduction control portion performing a push force reduction control reducing a push force of the sleeve that the shaft moving apparatus applies on the clutch rear teeth in response to a back and forth movement of the sleeve after the sleeve reaches an end surface of the clutch rear tooth. The control portion includes a retry control portion performing a retry control that re-applies the push force of the sleeve in response to a predetermined retry condition after the push force reduction control is performed.
Abstract:
A dog clutch for an automated transmission includes a rotary shaft rotatably connecting to one of an input shaft and an output shaft of the automated transmission, a clutch ring rotatably supported by the rotary shaft and rotatably connecting to the other of the input shaft and the output shaft, a clutch hub fixed to the rotary shaft, a sleeve including first teeth and second teeth, an axial driving device moving the sleeve, and a dog clutch portion arranged at the clutch ring, the dog clutch portion including: clutch forward teeth each having an engagement portion contactable with each of the first teeth, and inclined surfaces extending from the engagement portion toward both sides in a circumferential direction and inclined toward a rear end position of the dog clutch portion; and a clutch rearward tooth portion engageable with the second teeth and including clutch rearward teeth.
Abstract:
A vehicle drive system includes a transmission, a clutch, and a shift execution portion. The shift execution portion operates the shift actuator to control the connecting portion in an engaged state engaged with the idler gear of a present gear stage to disengage from the idler gear of the present gear stage while gradually decreasing the engine torque while the clutch is still engaged, when a shift operation from the present gear stage to a subsequent gear stage is executed.
Abstract:
A dog clutch control apparatus for an automated transmission includes a dog clutch transmission mechanism including a clutch ring, a clutch hub, a sleeve, an axial driving device, a dog clutch portion, a stroke position sensor, and a spline of the sleeve including high teeth and a low tooth, the dog clutch portion including clutch front teeth and clutch rear teeth, wherein in a rotation adjustment range, a control apparatus controls a thrust load of the axial driving device so that a first thrust load is applied to the sleeve, and the first thrust load generates a relative rotation between the sleeve and the dog clutch portion against a frictional force generated by contact between an end surface of each of the high teeth and a front end surface of each of the clutch rear teeth.
Abstract:
A dog clutch for an automated transmission includes a rotary shaft, a clutch ring, a hub, a sleeve including a spline that includes a plurality of first teeth and second teeth, a whole depth of each of the first teeth being greater than a whole depth of each of the second teeth, a dog clutch portion including clutch forward teeth, the teeth number of clutch forward teeth being equal to the teeth number of first teeth, each of the clutch forward teeth being formed at a position facing each of the first teeth to extend from a front end surface to a rear end position of the dog clutch portion, the dog clutch portion including clutch rearward teeth engageable with tooth grooves formed at the spline and formed to extend from a position retracted by a first predetermined distance from the front end surface to the rear end position.
Abstract:
A dog clutch for an automated transmission includes a rotary shaft rotatably connecting to one of an input shaft and an output shaft of the automated transmission, a clutch ring rotatably supported by the rotary shaft and rotatably connecting to the other of the input shaft and the output shaft, a clutch hub fixed to the rotary shaft, a sleeve including first teeth and second teeth, an axial driving device moving the sleeve, and a dog clutch portion arranged at the clutch ring, the dog clutch portion including: clutch forward teeth each having an engagement portion contactable with each of the first teeth, and inclined surfaces extending from the engagement portion toward both sides in a circumferential direction and inclined toward a rear end position of the dog clutch portion; and a clutch rearward tooth portion engageable with the second teeth and including clutch rearward teeth.
Abstract:
A vehicle drive system includes a transmission, a clutch, and a shift execution portion. The shift execution portion operates the shift actuator to control the connecting portion in an engaged state engaged with the idler gear of a present gear stage to disengage from the idler gear of the present gear stage while gradually decreasing the engine torque while the clutch is still engaged, when a shift operation from the present gear stage to a subsequent gear stage is executed.
Abstract:
A dog clutch control apparatus for an automated transmission includes a rotary shaft, a dog clutch transmission mechanism including a clutch ring, a clutch hub, a sleeve including a spline, an axial driving device, a dog clutch portion provided at the clutch ring, a rotation speed detection sensor, the spline including high teeth and a low tooth, clutch rear teeth and clutch front teeth formed at the dog clutch portion, and a control unit controlling an operation of the axial driving device based on a deceleration gradient of a rotation speed of either one of the sleeve and the clutch ring detected by the rotation speed detection sensor and controlling the axial driving device so that a decreased thrust load is applied to the clutch rear teeth from the sleeve in a case where the deceleration gradient is smaller than a first predetermined value.
Abstract:
A vehicle parking apparatus includes an engine, an electric motor, a transmission apparatus, a parking detection member, and a control unit. The transmission apparatus includes a first gear train configured to connect between the engine and a driving wheel, a second gear train configured to connect between the electric motor and the driving wheel, and a first switching mechanism selectively connecting and disconnecting between a predetermined first rotation element in the first gear train and a predetermined second rotation element in the second gear train. The control unit connects between the engine and the driving wheel by the first gear train, disconnects between the electric motor and the driving wheel by the second gear train, and disconnects the second gear train from the first gear train by the first switching mechanism in a case where the parking detection member detects the parked state of the vehicle.