Abstract:
A wet scrubber (10) useful for cleaning a process gas (F) comprising at least a first spray level system (40) and a second spray level system (48) arranged compactly vertically above the first spray level system (40) in a wet scrubber tower (14). Each spray level system (40, 48) is equipped with a plurality of atomizing flattened relatively wide spray angle nozzles (56) for atomizing an absorption liquid (AL) supplied thereto for contact and intermixing with the process gas (F) for removal of environmental pollutants therefrom.
Abstract:
A method for reducing mercury emission and/or re-emission in cleaned flue gas through control of sulfite concentration within a wet flue gas desulfurization (WFGD) system is disclosed. One method for reducing mercury emission and/or re-emission through control of sulfite concentration is to measure the sulfite concentration of an aqueous alkaline slurry used in a WFGD system and comparing the same to a predetermined sulfite concentration value. If the comparison reveals the measured sulfite concentration is above the predetermined values, the amount of oxidation air supplied to the system is increased. If the comparison reveals the measured sulfite concentration is below the predetermined values, the amount of oxidation air supplied to the system is decreased.
Abstract:
A system & Method for Preventing Scaling in a Flue Gas Desulphurization System is provided. The system includes an injector configured to direct a barrier fluid toward a surface that is otherwise susceptible to scaling when it comes in contact with super-saturated alkaline solutions such as slurry used to capture CO2 from a flue gas stream.
Abstract:
A method of scrubbing flue gas includes introducing flue gas comprising an acidic gas through an inlet into a tower; spraying an acid-absorptive fluid into the tower such that the acid-absorptive fluid contacts the flue gas; accumulating the acid-absorptive fluid in a recycle tank portion of the tower; and introducing an oxygen-containing gas into the acid-absorptive fluid in the recycle tank portion of the tower, wherein the oxygen-containing gas is introduced through at least one opening of an aerator, each of the at least one openings are positioned to release the oxygen-containing gas at least at a distance greater than or equal to a predetermined radial distance from the flue gas inlet, the predetermined radial distance being equal to at least 10% of a diameter of the recycle tank portion of the tower.
Abstract:
A method and system for high performance mercury capture from solid fuel combustion flue gas is provided. The method includes injecting pulverized activated carbon into a mercury capture system with at least a first and a second fabric filter, collecting the pulverized activated carbon captured in the second fabric filter, and injecting the collected pulverized activated carbon from the second fabric filter upstream of the first fabric filter for reuse to capture mercury from the process gas.
Abstract:
A system & Method for Preventing Scaling in a Flue Gas Desulphurization System is provided. The system includes an injector configured to direct a barrier fluid toward a surface that is otherwise susceptible to scaling when it comes in contact with super-saturated alkaline solutions such as slurry used to capture CO2 from a flue gas stream.
Abstract:
A method and apparatus or system is provided for cleaning a flue gas and/or cooling a flue gas with a dispersed finely divided absorption liquid. As such, the absorption liquid is dispersed in a wet scrubber through which flue gas flows for absorption liquid and flue gas intermingling and contact to produce a cleaned flue gas. The absorption liquid supplied to the wet scrubber is dispersed from upwardly spraying anti-clogging nozzles and downwardly spraying nozzles arranged to maximize absorption liquid and flue gas contact with minimal spray interference between nozzles.
Abstract:
A method and apparatus or system is provided for cleaning a flue gas and/or cooling a flue gas with a dispersed finely divided absorption liquid. As such, the absorption liquid is dispersed in a wet scrubber through which flue gas flows for absorption liquid and flue gas intermingling and contact to produce a cleaned flue gas. The absorption liquid supplied to the wet scrubber is dispersed from upwardly spraying anti-clogging nozzles and downwardly spraying nozzles arranged to maximize absorption liquid and flue gas contact with minimal spray interference between nozzles.
Abstract:
A method and system for high performance mercury capture from solid fuel combustion flue gas is provided. The method includes injecting pulverized activated carbon into a mercury capture system with at least a first and a second fabric filter, collecting the pulverized activated carbon captured in the second fabric filter, and injecting the collected pulverized activated carbon from the second fabric filter upstream of the first fabric filter for reuse to capture mercury from the process gas.
Abstract:
A wet scrubber (10) useful for cleaning a process gas (F) comprising at least a first spray level system (40) and a second spray level system (48) arranged compactly vertically above the first spray level system (40) in a wet scrubber tower (14). Each spray level system (40, 48) is equipped with a plurality of atomizing flattened relatively wide spray angle nozzles (56) for atomizing an absorption liquid (AL) supplied thereto for contact and intermixing with the process gas (F) for removal of environmental pollutants therefrom.