Abstract:
A combustor arrangement for a gas turbine includes a first burner, a first combustion chamber, a mixer for admixing a dilution gas to the gases leaving the first combustion chamber during operation, a second burner, and a second combustion chamber arranged sequentially in a fluid flow connection. These elements of the combustor arrangement are arranged in a row to form a flow path extending between the first combustion chamber and the second burner. The combustor arrangement includes acentral lance body arranged inside the flow path and extending from the first burner through the first combustion chamber into the mixer and into the second burner, wherein the lance body includes a fuel duct for providing fuel for the first burner and/or for the second burner.
Abstract:
A hot gas segment arrangement, especially for a combustion chamber of a gas turbine, that includes at least one hot gas segment, which is removably mounted on a carrier, and is subjected at its outside to hot gas and impingement-cooled at its inside, whereby an impingement plate with a plurality of distributed impingement holes is arranged in a distance at the inside of the impingement plate. A cooling air supply means is provided for loading the impingement plate with pressurized cooling air in order to generate through the impingement holes jets of cooling air, which impinge on the inside of the hot gas segment. The cooling efficiency and lifetime are increased by the impingement plate being part of a closed receptacle, which is supplied with the pressurized cooling air, and by the receptacle with the impingement plate being mounted on the carrier independently of the hot gas segment.
Abstract:
An impingement cooled wall arrangement includes a flow diverter arranged in the cooling flow path between the cooled wall and a sleeve to divert a cross flow away from a second aperture. The flow diverter extends in downstream direction of the cross flow beyond the second aperture with a first leg extending along one side of the second aperture in downstream direction of the cross flow and a second leg extending along the other side of the second aperture. No impingement cooling aperture is arranged in a first convective cooling section of the wall between the upstream end and downstream end of the flow diverter outside the section shielded by the diverter.
Abstract:
The invention relates to an annular combustion chamber of a gas turbine having a machine axis. The combustion chamber includes at least two zones. A first zone receives the fuel/air mixture of a plurality of burners. A second zone guides the hot gases being produced by the burners from the first zone to an entrance of a turbine section of said gas turbine. An annular transition liner includes a plurality of liner segments located at the transition between said first zone and second zone. Each of the liner segments includes with respect to the axial hot gas flow a leading edge, a trailing edge, and two sidewalls, and is provided with axial mounting means at the leading and trailing edges, such that the liner segment can be installed in axial direction and is axially fixed by respective segments of the neighboring first zone. Local spacer ribs are provided at the leading edge of the liner segments in order to establish a gap of minimum width between the liner segments and the fixing segments of the neighboring first zone.
Abstract:
The invention refers to a combustion chamber having a sleeve section which is at least partly enclosing a duct wall for guiding a cooling gas in a channel between the sleeve section and the duct wall along the outer surface of the duct wall. The sleeve section has one main inlet opening facing away from the duct wall wherein the cross sectional area of the main inlet opening is larger than 70% of the sum of the cross sections of all cooling openings to the sleeve section. The disclosure further refers to a gas turbine comprising such combustion chamber.
Abstract:
A combustion device (1) for a gas turbine includes portions (12) having an inner and an outer wall (13, 14) with an interposed noise absorption plate (15) having a plurality of holes (16). The combustion device (1) further has first passages (17) connecting zones between the inner wall (13) and the plate (15) to the inside of the combustion device (1) and second passages (21) for cooling the inner wall (13). The portions (12) also have an inner layer (22) between the inner wall (13) and the plate (15) defining inner chambers (23), each connected to at least a first passage (17), and an outer layer (24) between the outer wall (14) and the plate (15) defining outer chambers (25) connected to the inner chambers (23) via the holes (16) of the plate (15).
Abstract:
The invention relates to a damper for reducing the pulsations in a combustion chamber of a gas turbine. The damper includes a resonator cavity with an inlet and a neck tube in flow communication with the interior of the combustion chamber and resonator cavity, and a compensation assembly pivotably connected with the neck tube. The compensation assembly is inserted between the resonator cavity and the combustion chamber to permit relative rotation between the combustion chamber and the resonator cavity. With the damper according to the present invention, by way of providing the compensation assembly, it is assured the relative rotation between the combustion chamber and the resonator cavity is compensated, hence operation life is elongated.