Abstract:
The present disclosure refers to a method for operating a gas turbine with sequential combustors having a first-burner, a first combustion chamber, and a second combustor arranged sequentially in a fluid flow connection. To minimize emissions and combustion stability problems during transient changes when the fuel flow to a second combustor is initiated the method includes the steps of increasing the second fuel flow to a minimum flow, and reducing the first fuel flow to the first-burner of the same sequential combustor and/or the fuel flow to at least one other sequential combustor of the sequential combustor arrangement in order keep the total fuel mass flow to the gas turbine substantially constant. Besides the method a gas turbine with a fuel distribution system configured to carry out such a method is disclosed.
Abstract:
A combustor arrangement for a gas turbine includes a first burner, a first combustion chamber, a mixer for admixing a dilution gas to the gases leaving the first combustion chamber during operation, a second burner, and a second combustion chamber arranged sequentially in a fluid flow connection. These elements of the combustor arrangement are arranged in a row to form a flow path extending between the first combustion chamber and the second burner. The combustor arrangement includes acentral lance body arranged inside the flow path and extending from the first burner through the first combustion chamber into the mixer and into the second burner, wherein the lance body includes a fuel duct for providing fuel for the first burner and/or for the second burner.
Abstract:
A Helmholtz damper for a combustor of a gas turbine includes an enclosure defining a damping volume from which a neck portion extends and which has a flow path (F) for cooling and purging air with an inlet opening and an outlet opening to the enclosure. The outlet opening is formed in the neck portion. A seal is arranged at the neck portion adjacent to the outlet opening for cooling and purging air such that a cooling effect of the seal is provided.
Abstract:
A gas turbine combustor part of a gas turbine includes a wall, containing a plurality of near wall cooling channels extending essentially parallel to each other in a first direction within the wall in close vicinity to the hot side and being arranged in at least one row extending in a second direction. The near wall cooling channels are each provided at one end with an inlet for the supply of cooling air, and on the other end with an outlet for the discharge of cooling air. The inlets open into a common feeding channel for cooling air supply, and the outlets open into a common discharge channel for cooling air discharge. The feeding channel and the discharge channel extend in the second direction.
Abstract:
The present invention generally relates to a combined cycle power plant. More in particular, the present invention relates to a plant where the temperature of the flow of gas exiting the turbine is lowered without the need of employing high cost nickel alloys within the heat recovery steam generator.
Abstract:
The invention referring to a sequential combustor arrangement including a first burner, a first combustion chamber, a mixer arrangement for admixing a dilution air to the hot gases leaving the first combustion chamber during operation, a second burner, and a second combustion chamber arranged sequentially in a fluid flow connection. The mixer is adapted to guide combustion gases in a hot gas flow path extending between the first combustion chamber. The second burner including a duct having an inlet at an upstream end adapted for connection to the first combustion chamber and an outlet at a downstream end adapted for connection to the second burner. The mixer includes at least one group of injection pipes pointing inwards from the side walls of the mixer for admixing the dilution air to cool the hot flue gases leaving the first combustion chamber. The injection pipes are distributed circumferentially along the side wall of the mixer and wherein the injection pipes having a conical or quasi-conical shape addressed to the center of the mixer.
Abstract:
The invention concerns a method for a part load CO reduction operation and a low-CO emissions operation of a gas turbine with sequential combustion. The gas turbine essentially includes at least one compressor, a first combustor which is connected downstream to the compressor. The hot gases of the first combustor are admitted at least to an intermediate turbine or directly or indirectly to a second combustor. The hot gases of the second combustor are admitted to a further turbine or directly or indirectly to an energy recovery. At least one combustor runs under a caloric combustion path having a can-architecture, and wherein the air ratio (λ) of the combustion at least of the second combustor is kept below a maximum air ratio (λmax).
Abstract:
The burner of a gas turbine includes a swirl generator and, downstream of it, a mixing tube. The swirl generator is defined by at least two walls facing one another to define a conical swirl chamber and is provided with nozzles arranged to inject a fuel and apertures arranged to feed an oxidiser into the swirl chamber. The burner includes a lance which extends along a longitudinal axis of the swirl generator and is provided with side nozzles for ejecting a fuel within the burner. The side nozzles have their axes inclined with respect to the axis of the lance and can be positioned along the axis of the burner.
Abstract:
The invention concerns a gas turbine combustion system, including a gas turbine. The gas turbine includes at least one compressor, at least one combustion chamber for generating working gas, wherein the combustion chamber connected to receive compressed air from the compressor, at least one turbine connected to receive working gas from the combustion chamber. The combustion chamber consists of an individual can-combustor or comprising a number of can-combustors arranged in an annular can-architecture, wherein the can-combustor having at least one premixed burner. The ignition of the mixture starts at the premixed burner outlet and the flame is stabilized in the region of the premixed burner outlet by means of a backflow zone. The can-combustor comprising a number of premixed burners arranged uniformly or divided at least in two groups within the can-combustor.
Abstract:
A combustor arrangement for a gas turbine includes a first burner, a first combustion chamber, a mixer for admixing a dilution gas to the gases leaving the first combustion chamber during operation, a second burner, and a second combustion chamber arranged sequentially in a fluid flow connection. These elements of the combustor arrangement are arranged in a row to form a flow path extending between the first combustion chamber and the second burner. The arrangement includes a central lance body in the flow path, extending from the first burner into the second burner, which lance body includes at least one air duct for providing air for the mixer, wherein the air is injected into the combustor through air supply elements.