Abstract:
The invention relates to a method of post-built up heat treatment of an additively manufactured high strength component made of a gamma-prime strengthened superalloy based on Ni or Co or Fe or combinations thereof. An application of a rapid heating-up rate of 25 to 60° C./min in a specific temperature range during the first post-built heat treatment after additive manufacturing avoids or at least minimizes the gamma-prime precipitation in the component during heat-up. This results in crack-free components/articles compared to significant cracking present in conventionally heat treated components.
Abstract:
The invention refers to a method for manufacturing a three-dimensional metallic article/component made of a Ni-, Co-, Fe-based superalloy or combinations thereof, entirely or partly, by a powder based additive manufacturing process. During the step of performing powder melting by scanning a dual laser setup is used, where two laser beams of different beam properties are combined in the same machine and by adjusted beam profiling and integration of a suitable beam switch in a controlled manner a switching between two different laser beam diameters is performed. In each layer the laser beam with the smaller diameter scans the whole area and in every kth layer, with k>1, the laser beam with the larger diameter scans the area where a coarse grain size is needed thereby remelting the area with fine grain sizes. With such a manufacturing method higher lifetime and operation performances of metallic parts and prototypes can be reached.
Abstract:
The invention relates to a method for manufacturing a component, especially for gas turbines and other thermo machinery. The method includes providing a data set defining the component for being used in an additive manufacturing process; manufacturing said component by means of said additive manufacturing process according to said data set; and subjecting said manufactured component to a heat treatment (HT) in order to change the microstructure of the manufactured component. The properties of the component are improved in that at least two different component volumes (CA1-CA3) are defined within said component prior to the manufacturing step; at least two different process parameters (A, B) are chosen for the additive manufacturing process, which process parameters (A, B) result in different driving forces for a recrystallization and therefore a different recrystallization behavior in the material of the component; and the additive manufacturing process is executed with one of the at least two process parameters (A, B) being used during manufacturing a first of the at least two component volumes (CA1-CA3), resulting in a first recrystallization behavior in the first component volume, and with the other of the at least two process parameters (A, B) being used during manufacturing a second of said at least two component volumes (CA1-CA7), resulting in a second recrystallization behavior different from said first recrystallization behavior, in the second component volume; and the manufactured component is subjected to a heat treatment (HT), with a holding temperature (T_HT), wherein the holding temperature (T_HT) lies above a recrystallization temperature of at least one of said at least two component volumes.
Abstract:
The application relates to the technology of producing three-dimensional articles by means of powder-based additive manufacturing, such as selective laser melting (SLM) or electron beam melting (EBM). It refers to a Nickel-base superalloy powder, wherein the superalloy powder has a chemical composition that allows establishing a gamma-prime precipitation content of 60-70 vol.-% in the superalloy in a heat treated condition. The powder has a powder size distribution between 10 and 100 μm and a spherical morphology. The ratios of the content (in weight-%) of the alloying elements C, B, Hf, Zr, Si are the following: C/B=10-32; C/Hf>2; C/Zr>8; C/Si>1. A preferred embodiment includes of the following chemical composition (in weight-%): 7.7-8.3 Cr; 5.0-5.25 Co; 2.0-2.1 Mo;7.8-8.3 W; 5.8-6.1 Ta; 4.7-5.1 Al; 1.1-1.4 Ti; 0.08-0.16 C; 0.005-0.008 B; 0-0.04 Hf;0-0.01 Zr; 0-0.08 Si; the remainder being Ni and unavoidable impurities.
Abstract:
A method for producing a metallic component comprises the steps of first preparing a component by means of an additive manufacturing process, and second exposing said manufactured component to a heat treatment. Improved properties of the resulting component are achieved by said heat treatment comprising a zone annealing step.
Abstract:
The invention relates to a method for manufacturing a component, especially of a gas turbine, made of a single crystal (SX) or directionally solidified (DS) nickelbase superalloy, including a heat treatment and a machining and/or mechanical treatment step. The ductility of the component is improved by doing the machining and/or mechanical treatment step prior to said heat treatment and a solution heat treatment of the component is done prior to the machining/mechanical treatment step.
Abstract:
The invention relates to a method for producing a three-dimensional article or at least a part of such an article made of a gamma prime (γ′) precipitation hardened nickel base superalloy with a high volume fraction (>25%) of gamma-prima phase which is a difficult to weld superalloy, or made of a cobalt base superalloy, or of a non-castable or difficult to machine metal material by means of selective laser melting (SLM), in which the article is produced by melting of layerwise deposited metal powder with a laser beam characterized in that the SLM processing parameters are selectively adjusted to locally tailor the microstructure and/or porosity of the produced article or a part of the article and therefore to optimize desired properties of the finalized article/part of the article.
Abstract:
The invention relates to a method for additively manufacturing an article made of a difficult-to-weld highly-precipitation-strengthened Ni-base super alloy that comprises Al and Ti in the sum of more than 5 wt.-% or a difficult-to weld carbide/solution-strengthened cobalt (Co)-base super alloy, whereby a metal particle mixture of at least a first phase and a second phase is provided as a starting material, said first phase of the mixture being a base material and said second phase of the mixture being a material which is a derivative of the first material and has relative to said material of said first phase an improved weldability, and whereby the metal particle mixture is processed by means of an additive manufacturing process which is one of selective laser melting (SLM), selective laser sintering (SLS), electron beam melting (EBM), laser metal forming (LMF), laser engineered net shape (LENS), or direct metal deposition (DMD).
Abstract:
The disclosure refers to a method for manufacturing a three-dimensional article, the method including successively building up the article from a metallic base material by means of an additive manufacturing process, thereby creating an article with a substantial anisotropy of its properties and heat treating the manufactured article at a sufficiently high temperature to reduce the anisotropy significantly by recrystallization and/or grain coarsening.