Abstract:
The invention relates to a method for manufacturing a component, especially of a gas turbine, made of a single crystal (SX) or directionally solidified (DS) nickelbase superalloy, including a heat treatment and a machining and/or mechanical treatment step. The ductility of the component is improved by doing the machining and/or mechanical treatment step prior to said heat treatment and a solution heat treatment of the component is done prior to the machining/mechanical treatment step.
Abstract:
Shape-setting methods for fabricating devices made of single crystal shape memory alloys. The method include drawing a single crystal of a shape memory alloy from a melt of the alloy. This is followed by heating and quenching the crystal sufficiently rapid to limit the formation of alloy precipitates to an amount which retains hyperelastic composition and properties of the crystal.
Abstract:
A nickel based single crystal superalloy comprising 7-9 wt % cobalt, 3.5-4.5 wt % chromium, 0-2.4 wt % molybdenum, 4-8 wt % tungsten, 3.5-6 wt % rhenium, 5-6.5 wt % aluminium, 6.5-8.5 wt % tantalum, 0-0.2 wt % hafnium and the balance nickel plus incidental impurities. The nickel based single crystal superalloy is suitable for use as a gas turbine engine turbine blade or turbine vane. It is of particular us on cooled turbine blades and turbine vanes which have ceramic thermal barrier coatings, because the superalloy is compatible with the ceramic thermal barrier coating to minimise spalling. The superalloy has better mechanical properties than other second-generation single crystal superalloys and has better creep strength and oxidation resistance.
Abstract:
A laminate article consists of a substrate and a biaxially textured protective layer over the substrate. The substrate can be biaxially textured and also have reduced magnetism over the magnetism of Ni. The substrate can be selected from the group consisting of nickel, copper, iron, aluminum, silver and alloys containing any of the foregoing. The protective layer can be selected from the group consisting of gold, silver, platinum, palladium, and nickel and alloys containing any of the foregoing. The protective layer is also non-oxidizable under conditions employed to deposit a desired, subsequent oxide buffer layer. Layers of YBCO, CeO2, YSZ, LaAlO3, SrTiO3, Y2O3, RE2O3, SrRuO3, LaNiO3 and La2ZrO3 can be deposited over the protective layer. A method of forming the laminate article is also disclosed.
Abstract:
Problem To provide a heat resistant metal gasket that is controlled to have a strength level (ordinary temperature hardness) capable of facilitating processing, and has excellent gas leak resistance.Solution An austenitic stainless steel sheet for a metal gasket, having a chemical composition containing from 0.015 to 0.200% of C, from 1.50 to 5.00% of Si, from 0.30 to 2.50% of Mn, from 7.0 to 17.0% of Ni, from 13.0 to 23.0% of Cr, and from 0.005 to 0.250% of N, all in terms of percentage by mass, containing, as necessary, at least one of Mo, Cu, Nb, Ti, V, Zr, W, Co, B, Al, REM (rare-earth element except for Y), Y, Ca and Mg, with the balance of Fe and unavoidable impurities, having an ordinary temperature hardness of 430 HV or less, having a half width of a peak of an austenite crystal (311) plane in an X-ray diffraction pattern of a cross section perpendicular to a sheet thickness direction of from 0.10 to 1.60°, and having a surface roughness Ra of 0.30 μmm or less.
Abstract:
Shape-setting methods for fabricating devices made of single crystal shape memory alloys. The method include drawing a single crystal of a shape memory alloy from a melt of the alloy. This is followed by heating and quenching the crystal sufficiently rapid to limit the formation of alloy precipitates to an amount which retains hyperelastic composition and properties of the crystal.
Abstract:
The invention relates to an article with an improved buffer layer architecture comprising a substrate having a metal surface, and an epitaxial buffer layer on the surface of the substrate. The epitaxial buffer layer comprises at least one of the group consisting of ZrO2, HfO2, and compounds having at least one of Ca and a rare earth element stabilizing cubic phases of ZrO2 and/or HfO2. The article can also include a superconducting layer deposited on the epitaxial buffer layer. The article can also include an epitaxial capping layer between the epitaxial buffer layer and the superconducting layer. A method for preparing an epitaxial article comprises providing a substrate with a metal surface, depositing on the metal surface an epitaxial buffer layer comprising at least one material selected from the group consisting of ZrO2, HfO2, and compounds having at least one of Ca and a rare earth element stabilizing cubic phases of at least one of ZrO2 and HfO2. The epitaxial layer depositing step occurs in a vacuum with a background pressure of no more than 1×10−5 Torr. The method can further comprise depositing a superconducting layer on the epitaxial layer, and depositing an epitaxial capping layer between the epitaxial buffer layer and the superconducting layer.
Abstract:
A gas turbine for power generation operated at a turbine nozzle inlet temperature ranging from 1200 to 1650° C., which is improved to obtain a high heat efficiency by making disk blades and nozzles arranged in first to final stages from optimum materials and optimally cooling these disk blades and nozzles, and to obtain a combined power generation system using the gas turbine. The combined power generation system includes a highly efficient gas turbine operated at a turbine nozzle inlet combustion gas temperature ranging from 1200 to 1650° C., and a high pressure-intermediate pressure-low pressure integral type steam turbine operated at a steam inlet temperature of 530° C. or more, wherein the gas turbine is configured such that turbine blades, nozzles and disks are each cooled, and the blades and nozzles are each made from an Ni-based alloy having a single crystal or columnar crystal structure and disks are made from a martensite steel.
Abstract:
Pre-straining and thermal recrystallization processes for maximizing formability in SPF sheet alloys of aluminum, magnesium, iron and titanium can be modified to form sheet products with roughened or textured surfaces for low-slip applications or coating adherence or decorative applications. By determination of suitable pre-strain levels and recrystallization/forming temperatures for s sheet metal stock, relatively large grained microstructures are formed in the sheet that yield useful surface texture during forming.