Abstract:
An electricity production system configured to operate in accordance with a method of operating an electricity production system that at least includes the steps of: determining an oxygen distribution between oxygen gas to be separated by an air separation unit (“ASU”) and oxygen gas stored in a storage tank of the ASU to be fed to the boiler unit, determining a carbon capture value for a gas processing unit, determining a power consumption value for the gas processing unit and the ASU, determining a total power demand value based on the power consumption value of the gas processing unit and the ASU, and on a determined electricity demand, and controlling the boiler unit, the turbine, the ASU, and the gas processing unit based on the determined total power demand along with correcting signals generated from a coordinated Model Predictive Control.
Abstract:
An oxy-combustion boiler unit is disclosed which includes a furnace for combusting fuel and for emitting flue gas resulting from combustion. The furnace has first, second and third combustion zones, and an air separation unit for separating oxygen gas from air and providing a first portion of the separated oxygen to a first oxidant flow, a second portion to a second oxidant flow, and a third portion of the separated oxygen gas to the first, second, and third zones of the furnace. A controller can cause the separated oxygen gas to be distributed so that the first and second oxygen flows have a desired oxygen content, and so that the first, second, and third zones of the furnace receive a desired amount of oxygen based on a combustion zone stoichiometry control.
Abstract:
A method for controlling at least one operational parameter of a plant (1) having a combustion unit (3) can include estimating a status of at least one operational variable of the plant to identify an estimated value for the operational variable. For each operational variable, the estimated value for the operational variable can be compared with a measured value of the operational variable to determine an uncertainty value based on a difference in value between the measured value and the estimated value for the operational variable. A control signal can be generated based on a reference signal, the measured value, and the deviation value for sending to at least one element of the plant (1) for controlling a process of the plant (1).
Abstract:
A plant (1) and a gas processing unit (GPU) (17) of the plant can be configured to operate in accordance with a method that is configured to permit the GPU (17) to operate such that the optimum operating point for the GPU (17) at steady state to produce liquid carbon dioxide product from a separation unit (117) of the GPU (17) for sending to a storage device (19) is achieved with a desired purity level while simultaneously maintaining a required minimum carbon capture rate with the minimum consumption of power and/or minimum economic cost associated with operations of the GPU (17). A controller (23) can be configured to communicate with elements of the GPU (17) to receive parameter values to calculate manipulated variables configured to bias set points for parameters used to control operations of different elements of the GPU (17).
Abstract:
Disclosed herein is a control system for NOx reduction in a power plant, the control system comprising a model predictive controller; a proportional integral differential controller and/or an adaptive controller; where the proportional integral differential controller and/or an adaptive controller are subordinated to and in operative communication with the model predictive controller; where the proportional integral differential controller and/or an adaptive controller comprise a feedback loop; a NOx reduction system comprising a NOx reducing agent supply tank and a water supply tank; and a furnace for combusting a fuel; where the furnace lies downstream of the NOx reduction system and where the furnace is provided with a plurality of nozzles that are in fluid communication with the NOx reduction system; where the control system is in electrical communication with the NOx reduction system.
Abstract:
A method of operating an electricity production system having at least one oxy-combustion boiler unit and a turbine for electricity generation at least includes the steps of: determining a power demand for an air separation unit that supplies oxygen gas to the boiler unit and a gas processing unit that treats flows of fluid for CO2 capture; determining a total power demand for electricity production that includes the determined power demand for the air separation unit and the gas processing unit; and coordinating operation of the air separation unit, gas processing unit, the boiler unit, and the turbine such that power generated by the plant provides power that meets the determined total power demand and also controls steam pressure of the turbine to a pre-specified level.