摘要:
A sensor network system for determining a chimney maintenance schedule comprises a sensor unit (16) arranged for placement in or proximate to a chimney (6). The sensor unit comprises at least one sensor arranged to measure a parameter of the chimney (6) and use the measured parameter to generate chimney health data associated with the chimney (6). The sensor unit includes a transmission module arranged to transmit (20) the chimney health data to a remote analysis unit (18). The remote analysis unit (18) is arranged to receive chimney profile data associated with the chimney (6) and to estimate a chimney health level associated with the chimney (6) from the respective chimney health data and chimney profile data. The remote analysis unit (18) determines the chimney maintenance schedule from the estimated chimney health level.
摘要:
A process for at least one of a chemical and a physical treatment of fluidizable substances in a reactor. The process includes introducing a hot gas into an interior of the reactor through a gas supply tube and cooling at least one of the hot gas and the gas supply tube with a coolant. The cooling is performed by contacting the hot gas with the coolant so as to provide a temperature of a wall of the gas supply tube at least 50° C. lower than a temperature of the gas at an inlet of the gas supply tube facing away from the interior of the reactor.
摘要:
The invention relates to an oxycombustion method with capture of the CO2 produced. Mixer M supplies chamber CC with a mixture of oxygen from unit O and of recycled fumes from storage drum SG. Chamber CC is supplied with oxidizer from mixer M and with fuel flowing in through line 8. All of the combustion fumes are sent to water condensation unit CT, then fed into storage drum SG. Part of the fumes containing all the CO2 produced by combustion is compressed to about 60 bars, then cooled and partly liquefied to about 15° C. in liquefaction unit L1, and stored in drum SM. According to the invention, the partly liquefied CO2 is compressed by means of a multiphase pump in order to be discharged through line 16 and stored in an underground reservoir.
摘要:
The invention relates to an inspection and repair module for an internal side wall of a vertically erected structure, with the module including a carrier for supporting at least one data recording mechanism and being securable to a hoist, and for an inspection and repair module for an internal wall of a conduit with the module including propulsion means comprising a set of driven tracked wheels controllable by a controller carried by the carrier and configured to provide, within a conduit, longitudinal forward and reverse motion.
摘要:
A coal combustion process is described using cleaned coal and processed biomass to reduce adverse by-products in a coal combusting apparatus including the reduction of carbon dioxide by at least 50 volume %. The coal feedstock comprises an aggregate blend of cleaned coal and processed biomass. The biomass feedstock comprises processed biomass pellets. The total energy density is predetermined and can be similar to the coal component or higher than the coal component. The intracellular salt in the processed biomass is at least 60 wt % less for the processed organic-carbon-containing feedstock used to make the processed biomass pellets than that of the starting un-processed processed organic-carbon-containing feedstock. The cleaned coal has a sulfur content that is 50 wt % less than that of un-cleaned coal before it passed through the coal-cleaning sub-system.
摘要:
The burning of fuel (e.g., coal) in industrial equipment generates an exhaust flow containing airborne particulate. The flow is passed through a rotary heat exchanger to preheat inlet air. The heat exchanger element is subject to fouling and is cleaned by a pulsed combustion device. The device is operated by introducing a fuel and oxidizer charge to at least one conduit and initiating combustion of the charge. The combustion generates a shock wave to which the element is exposed, dislodging and/or otherwise removing the deposits.
摘要:
The invention can be summarized as follows. There is provided a method for oxidizing elemental mercury in a combustion process comprising, adding a composition comprising an aluminum silicate to a combustion chamber, boiler or kiln downstream from the burner region combustion zone. There is further provided a method for reducing the emission of one or more heavy metals in a combustion process by adding a composition comprising an aluminum silicate to a combustion chamber downstream from the burner region combustion zone. There is also provided a composition comprising an aluminum silicate that may be employed to oxidize elemental mercury generated in a combustion process. The composition also may be employed to reduce the emission of one or more heavy metals generated in a combustion process.
摘要:
Embodiments of the present disclosure are directed to a vent monitoring system that includes a first sensor configured to provide feedback indicative of an amount of a substance accumulated in the vent, a second sensor configured to provide feedback indicative of a temperature in the vent, and a control system communicatively coupled to the first sensor and the second sensor, where the control system is configured to generate a notification when the feedback from the first sensor exceeds a first target level and when the feedback from the second sensor exceeds a second target level.
摘要:
Embodiments of the present disclosure are directed to a vent monitoring system that includes a first sensor configured to provide feedback indicative of an amount of a substance accumulated in the vent, a second sensor configured to provide feedback indicative of a temperature in the vent, and a control system communicatively coupled to the first sensor and the second sensor, where the control system is configured to generate a notification when the feedback from the first sensor exceeds a first target level and when the feedback from the second sensor exceeds a second target level.
摘要:
A plant (1) and a gas processing unit (GPU) (17) of the plant can be configured to operate in accordance with a method that is configured to permit the GPU (17) to operate such that the optimum operating point for the GPU (17) at steady state to produce liquid carbon dioxide product from a separation unit (117) of the GPU (17) for sending to a storage device (19) is achieved with a desired purity level while simultaneously maintaining a required minimum carbon capture rate with the minimum consumption of power and/or minimum economic cost associated with operations of the GPU (17). A controller (23) can be configured to communicate with elements of the GPU (17) to receive parameter values to calculate manipulated variables configured to bias set points for parameters used to control operations of different elements of the GPU (17).