Abstract:
A system for testing a number of electronic module assemblies (EMAs) that control one or more personal restraint systems. A programmed processor with a computer system transmits signals that instruct the EMAs to perform a diagnostic self-test. The results of the self-test are received by the computer system and stored in a computer readable memory. In one embodiment, the computer system is a cabin management computer system for use on an aircraft.
Abstract:
An electronic module assembly (EMA) for use in controlling one or more personal restraint systems. A programmed processor within the EMA is configured to determine when a personal restraint system associated with each seat in a vehicle should be deployed. In addition, the programmed processor is configured to perform a diagnostic self-test to determine if the EMA and the personal restraint systems are operational. In one embodiment, results of the diagnostic self-test routine are displayed on a display included on the electronic module assembly. In an alternative embodiment, the results of the diagnostic self-test routine are transmitted via a wireless transceiver to a remote device. The remote device can include a wireless interrogator or can be a remote computer system such as a cabin management computer system.
Abstract:
An electronic module assembly (EMA) for use in controlling one or more personal restraint systems. A programmed processor within the EMA is configured to determine when a personal restraint system associated with each seat in a vehicle should be deployed. In addition, the programmed processor is configured to perform a diagnostic self-test to determine if the EMA and the personal restraint systems are operational. In one embodiment, results of the diagnostic self-test routine are displayed on a display included on the electronic module assembly. In an alternative embodiment, the results of the diagnostic self-test routine are transmitted via a wireless transceiver to a remote device. The remote device can include a wireless interrogator or can be a remote computer system such as a cabin management computer system.
Abstract:
Active airbag vent systems and associated systems and methods are described herein. An airbag system having an active vent configured in accordance with an embodiment of the present technology can include, for example, a first inflator operably coupled to a first hose for inflating an airbag in response to a rapid deceleration event. The airbag system can further include a second inflator operably coupled to a second hose configured to release a vent or seam on the airbag to rapidly deflate the airbag after initial deployment of the airbag.
Abstract:
A system for testing a number of electronic module assemblies (EMAs) that control one or more personal restraint systems. A programmed processor with a computer system transmits signals that instruct the EMAs to perform a diagnostic self-test. The results of the self-test are received by the computer system and stored in a computer readable memory. In one embodiment, the computer system is a cabin management computer system for use on an aircraft.
Abstract:
A system for testing a number of electronic module assemblies (EMAs) that control one or more personal restraint systems. A programmed processor with a computer system transmits signals that instruct the EMAs to perform a diagnostic self-test. The results of the self-test are received by the computer system and stored in a computer readable memory. In one embodiment, the computer system is a cabin management computer system for use on an aircraft.
Abstract:
An electronic module assembly (EMA) for use in controlling one or more personal restraint systems. A programmed processor within the EMA is configured to determine when a personal restraint system associated with each seat in a vehicle should be deployed. In addition, the programmed processor is configured to perform a diagnostic self-test to determine if the EMA and the personal restraint systems are operational. In one embodiment, results of the diagnostic self-test routine are displayed on a display included on the electronic module assembly. In an alternative embodiment, the results of the diagnostic self-test routine are transmitted via a wireless transceiver to a remote device. The remote device can include a wireless interrogator or can be a remote computer system such as a cabin management computer system.
Abstract:
An electronic module assembly for controlling the deployment of one or more airbags in an aircraft includes a power source, a crash sensor configured to produce a signal in response to a crash event and an accelerometer that is configured to produce a signal in response to a crash event. A processor starts a timer upon detection of the signal from the crash sensor. When the processor receives a signal from the crash sensor, the processor is configured to determine if a signal has also been received from the accelerometer and if signals from both the crash sensor and the accelerometer indicate a crash event then the processor reads a memory associated with an inflator. The processor reads a timing value selected for the inflator and fires the inflator when the timer has a value equal to the timing value selected for the inflator.
Abstract:
An electronic module assembly for controlling the deployment of one or more airbags in an aircraft includes a power source, a crash sensor configured to produce a signal in response to a crash event and an accelerometer that is configured to produce a signal in response to a crash event. A processor starts a timer upon detection of the signal from the crash sensor. When the processor receives a signal from the crash sensor, the processor is configured to determine if a signal has also been received from the accelerometer and if signals from both the crash sensor and the accelerometer indicate a crash event then the processor reads a memory associated with an inflator. The processor reads a timing value selected for the inflator and fires the inflator when the timer has a value equal to the timing value selected for the inflator.
Abstract:
Active airbag vent systems and associated systems and methods are described herein. An airbag system having an active vent configured in accordance with an embodiment of the present technology can include, for example, a first inflator operably coupled to a first hose for inflating an airbag in response to a rapid deceleration event. The airbag system can further include a second inflator operably coupled to a second hose configured to release a vent or seam on the airbag to rapidly deflate the airbag after initial deployment of the airbag.