Abstract:
This disclosure relates to dynamic baseband management for a wireless device. The wireless device may be an accessory device. The accessory device may determine whether it has a short-range wireless communication link with a companion device. The accessory device may determine one or more proximity metrics relating to the companion device. The accessory device may further determine one or more metrics associated with user settings, user activity and/or application activity at the wireless device. The wireless device may select a (e.g., full, limited, or off) baseband operating mode based on any or all of these considerations.
Abstract:
This disclosure relates to wireless connection management for an accessory device. A companion device and the accessory device may establish a wireless link. The companion device may associate with a Wi-Fi access point. The companion device may determine whether the Wi-Fi access point supports access by the accessory device to a wide area network. The companion device may determine whether to provide association information for the Wi-Fi access point to the accessory device based at least in part on whether the Wi-Fi access point supports access by the accessory device to the wide area network. The companion device may monitor whether the Wi-Fi access point continues to support access by the accessory device to the wide area network, and may indicate to the accessory device to disassociate with the Wi-Fi access point if the Wi-Fi access point no longer supports access by the accessory device to the wide area network.
Abstract:
Methods and systems are disclosed for performing seamless voice call handover and data handoff between a cellular network and a non-cellular (e.g., Wi-Fi) network, by a link budget limited user equipment device (UE) in standalone mode. The cellular radio may be maintained in a non-communication mode when not in use, to prevent power and peak power issues that may be unique to link budget limited devices. In response to poor non-cellular performance in support of a voice call, the UE may transition the cellular radio from the non-communication state to an online state. If the cellular network indicates that packet-switched calls are supported, then the UE may initiate handover of the voice call to the cellular network. Various methods for seamless handoff of data communications are also disclosed, in both the presence and the absence of a voice call. Various metrics are disclosed to enhance handoff determinations.
Abstract:
Representative embodiments described herein set forth techniques for provisioning bootstrap electronic Subscriber Identity Modules (eSIMs) to mobile devices. According to some embodiments, a mobile device can be configured to issue, to an eSIM selection server, a bootstrap eSIM request that includes (i) metadata associated with the mobile device, and (ii) metadata associated with an electronic Universal Integrated Circuit Card (eUICC) included in the mobile device. In turn, the eSIM selection server selects and binds a particular bootstrap eSIM to the mobile device, and provides information to the mobile device that enables the mobile device to obtain the particular bootstrap eSIM from one or more eSIM servers. When the mobile device obtains the particular bootstrap eSIM, the mobile device can interface with a mobile network operator (MNO) and obtain a complete eSIM that enables the mobile device to access services provided by the MNO.
Abstract:
This disclosure relates to dynamic baseband management for a wireless device. The wireless device may be an accessory device. The accessory device may determine whether it has a short-range wireless communication link with a companion device. The accessory device may determine one or more proximity metrics relating to the companion device. The accessory device may further determine one or more metrics associated with user settings, user activity and/or application activity at the wireless device. The wireless device may select a (e.g., full, limited, or off) baseband operating mode based on any or all of these considerations.
Abstract:
Some embodiments relate to methods for provisioning a secondary wireless device with an eSIM for wireless communication and activating multi-SIM functionality between the secondary wireless device and a primary wireless device having a subscribed SIM. The primary wireless device may act as a proxy in obtaining the eSIM for the secondary wireless device. The primary wireless device may then provide, to the cellular network, identifiers of the SIMs of the primary and secondary wireless devices. The primary wireless device may then request initiation of multi-SIM functionality for the two SIMs, and receive an indication that the multi-SIM functionality has been initiated. As an example, the multi-SIM functionality may be implemented by mapping the SIM of the primary wireless device and the SIM of the secondary wireless device (e.g., the provisioned eSIM) to the same Mobile Directory Number (MDN).
Abstract:
Described are methods that allow credentials of a first client station to authenticate a second client station. An exemplary method includes associating a first client station with a second client station, the first client station including credential information, the associating authorizing the second client station to use the credential information, transmitting, by the second client station, an association request to a network, the network utilizing the credential information to authorize a connection, the second client station configured to perform a proxy functionality for requests received from the network to be forwarded to the first client station and responses received from the first client station to be forwarded to the network, determining, by the network, whether the credential information received from the second client station is authenticated and establishing a connection between the second client station and the network using the credential information of the first client station.
Abstract:
Techniques for flexible electronic subscriber identity module (eSIM) deployment to a wireless device by a network server, including generation of multiple eSIMs using an identical eSIM identifier value, such as an identical integrated circuit card identifier (ICCID) value, and subsequent selection of an eSIM based on capabilities of the wireless device. Multiple eSIMs that correspond to different sets of wireless device capabilities are generated without knowledge of the wireless communication standards that a wireless device supports. The multiple eSIMs include a first eSIM that includes fifth generation (5G) wireless communication protocol information and a second eSIM that excludes 5G wireless communication protocol information. The network server selects an eSIM from the multiple eSIMs based on whether the wireless device is 5G capable. After selection and binding of a profile package that includes the eSIM, the remaining eSIMs that use the identical ICCID value are deleted, for security enforcement against cloning.
Abstract:
The described embodiments set forth techniques for managing inactive (disabled) electronic subscriber identity modules (eSIMs) on secure elements, e.g., Universal Integrated Circuit Cards (UICCs) and/or embedded UICCs (eUICCs), of a wireless device, including retrieving information from an inactive eSIM, obtaining authentication tokens from an inactive eSIM, authenticating the inactive eSIM with a network-based Mobile Network Operator (MNO) server, retrieving status information for a subscription account associated with the inactive eSIM, and/or performing an account management operation on the inactive eSIM.
Abstract:
Disclosed herein are techniques for enabling a user to activate a new device with a Mobile Network Operator (MNO) without requiring the user to provide MNO authentication credentials that are easily forgotten. The user activates the new device using credentials from an existing device (associated with the user) that is trusted by the MNO and also using a trust score provided by a third-party server that has knowledge of associations between the user and the existing device. The new device can be a supplemental device, such as a wearable device to a cellular phone, where both devices remain capable of accessing services provided by the MNO after the new device is activated with the MNO. The new device can also be a replacement device, such as a new phone, tablet, or wearable device, where the new device supplants access to services provided by the MNO for an existing device.