Abstract:
Several methods for operating a built-in digital camera of a portable, handheld electronic device are described. In one embodiment, the device receives a user selection (e.g., tap, tap and hold, gesture) of a region displayed on the display screen (e.g., touch sensitive screen). A touch to focus mode may then be initiated in response to the user selection and exposure and focus parameters determined and adjusted. Then, an automatic scene detection mechanism can determine whether a scene has changed. If the scene has changed, then the touch to focus mode ends and a default automatic focus mode initiates. This mode sets a new exposure metering area and focus area prior to determining and adjusting exposure and focus parameters, respectively.
Abstract:
Several methods for operating a built-in digital camera of a portable, handheld electronic device are described. In one embodiment, the device receives a user selection (e.g., tap, tap and hold, gesture) of a region displayed on the display screen (e.g., touch sensitive screen). A touch to focus mode may then be initiated in response to the user selection and exposure and focus parameters determined and adjusted. Then, an automatic scene detection mechanism can determine whether a scene has changed. If the scene has changed, then the touch to focus mode ends and a default automatic focus mode initiates. This mode sets a new exposure metering area and focus area prior to determining and adjusting exposure and focus parameters, respectively.
Abstract:
Some embodiments provide an image editing application that edits an image. The image editing application assigns a mask value to each pixel of the image that includes several pixels. The mask value for a pixel is for using when processing the pixel. The image editing application displays the image in a display area. The image editing application receives several user inputs on a set of pixels of the image. The image editing application incrementally applies an image processing operation to the set of pixels by changing the mask values for the set of pixels each time the set of pixels receives a user input.
Abstract:
Several methods for operating a built-in digital camera of a portable, handheld electronic device are described. In one embodiment, the device receives a user selection (e.g., tap, tap and hold, gesture) of a region displayed on the display screen (e.g., touch sensitive screen). A touch to focus mode may then be initiated in response to the user selection and exposure and focus parameters determined and adjusted. Then, an automatic scene detection mechanism can determine whether a scene has changed. If the scene has changed, then the touch to focus mode ends and a default automatic focus mode initiates. This mode sets a new exposure metering area and focus area prior to determining and adjusting exposure and focus parameters, respectively.
Abstract:
Methods and apparatuses for per display scale factors within a multiple display system are described.In one aspect of the invention, a machine implemented method includes setting a scale factor for each window buffer equal to an extreme scale factor among a plurality of displays. The method further includes transferring data from each window buffer into a corresponding frame buffer for one of the plurality of displays by setting a scale factor of each frame buffer equal to the scale factor of the corresponding display.In one example according to this aspect, the method further includes displaying on a high resolution display and a low resolution display an image, stored in the corresponding frame buffers, with substantially the same physical size even though the displays have different scale factors and pixel densities. Also, the extreme scale factor is one of the largest scale factor or the smallest scale factor.
Abstract:
Methods and apparatuses for per display scale factors within a multiple display system are described.In one aspect of the invention, a machine implemented method includes setting a scale factor for each window buffer equal to an extreme scale factor among a plurality of displays. The method further includes transferring data from each window buffer into a corresponding frame buffer for one of the plurality of displays by setting a scale factor of each frame buffer equal to the scale factor of the corresponding display.In one example according to this aspect, the method further includes displaying on a high resolution display and a low resolution display an image, stored in the corresponding frame buffers, with substantially the same physical size even though the displays have different scale factors and pixel densities. Also, the extreme scale factor is one of the largest scale factor or the smallest scale factor.
Abstract:
Some embodiments provide an image editing application that edits an image. The image editing application assigns a mask value to each pixel of the image that includes several pixels. The mask value for a pixel is for using when processing the pixel. The image editing application displays the image in a display area. The image editing application receives several user inputs on a set of pixels of the image. The image editing application incrementally applies an image processing operation to the set of pixels by changing the mask values for the set of pixels each time the set of pixels receives a user input.
Abstract:
Several methods for operating a built-in digital camera of a portable, handheld electronic device are described. In one embodiment, the device receives a user selection (e.g., tap, tap and hold, gesture) of a region displayed on the display screen (e.g., touch sensitive screen). A touch to focus mode may then be initiated in response to the user selection and exposure and focus parameters determined and adjusted. Then, an automatic scene detection mechanism can determine whether a scene has changed. If the scene has changed, then the touch to focus mode ends and a default automatic focus mode initiates. This mode sets a new exposure metering area and focus area prior to determining and adjusting exposure and focus parameters, respectively.
Abstract:
Several methods for operating a built-in digital camera of a portable, handheld electronic device are described. In one embodiment, the device receives a user selection (e.g., tap, tap and hold, gesture) of a region displayed on the display screen (e.g., touch sensitive screen). A touch to focus mode may then be initiated in response to the user selection and exposure and focus parameters determined and adjusted. Then, an automatic scene detection mechanism can determine whether a scene has changed. If the scene has changed, then the touch to focus mode ends and a default automatic focus mode initiates. This mode sets a new exposure metering area and focus area prior to determining and adjusting exposure and focus parameters, respectively.
Abstract:
Several methods for operating a built-in digital camera of a portable, handheld electronic device are described. In one embodiment, the device receives a user selection (e.g., tap, tap and hold, gesture) of a region displayed on the display screen (e.g., touch sensitive screen). A touch to focus mode may then be initiated in response to the user selection and exposure and focus parameters determined and adjusted. Then, an automatic scene detection mechanism can determine whether a scene has changed. If the scene has changed, then the touch to focus mode ends and a default automatic focus mode initiates. This mode sets a new exposure metering area and focus area prior to determining and adjusting exposure and focus parameters, respectively.