Abstract:
Systems and method to improve performance of a radio frequency system while operating in compliance with wireless transmission regulations are provided. One embodiment describes a radio frequency system including an antenna that wirelessly transmits an analog electrical signal at a transmission frequency and receives a first network signaling value from a wireless network. The radio frequency system further includes a controller that determines operational constraints on the radio frequency system based on a region of operation; determines a second network signaling value based on the operational constraints, in which the second network signaling value overrides the first network signaling value; determines operational parameters based on the second network signaling value; and instructs the radio frequency system to implement the operational parameters to facilitate the radio frequency system operating in compliance with the operational constraints.
Abstract:
Systems and method to improve performance of a radio frequency system while operating in compliance with wireless transmission regulations are provided. One embodiment describes a radio frequency system including an antenna that wirelessly transmits an analog electrical signal at a transmission frequency and receives a first network signaling value from a wireless network. The radio frequency system further includes a controller that determines operational constraints on the radio frequency system based on a region of operation; determines a second network signaling value based on the operational constraints, in which the second network signaling value overrides the first network signaling value; determines operational parameters based on the second network signaling value; and instructs the radio frequency system to implement the operational parameters to facilitate the radio frequency system operating in compliance with the operational constraints.
Abstract:
Systems and method to improve performance of a radio frequency system while operating in compliance with wireless transmission regulations are provided. One embodiment describes a radio frequency system including an antenna that wirelessly transmits an analog electrical signal at a transmission frequency and receives a first network signaling value from a wireless network. The radio frequency system further includes a controller that determines operational constraints on the radio frequency system based on a region of operation; determines a second network signaling value based on the operational constraints, in which the second network signaling value overrides the first network signaling value; determines operational parameters based on the second network signaling value; and instructs the radio frequency system to implement the operational parameters to facilitate the radio frequency system operating in compliance with the operational constraints.
Abstract:
A communication device has multiple antennas in an antenna array, and applies the same input power to each antenna. A controller of the communication device instructs phase shifters to form a first subarray with a first pair of the antennas and a second subarray with a second pair of the antennas. The controller causes the first subarray to generate a first beam and causes the second subarray to generate a second beam, wherein the first beam combines in phase with the second beam to generate a coarse beam. The coarse beam may have increased beam width while exhibiting decreased peak gain loss.
Abstract:
The disclosed embodiments provide a system that uses a first antenna and a second antenna in a portable electronic device. During operation, the system receives a request to switch from the first antenna to the second antenna to transmit a signal to a cellular receiver. Next, the system loads a set of radio-frequency (RF) calibration values for the second antenna. Finally, the system performs the switch from the first antenna to the second antenna to transmit the signal, wherein the second antenna is operated using the RF calibration values after the switch.
Abstract:
A wireless communication device (UE) may conduct wireless communications using one or more antennas according to multiple radio access technologies (RAT) associated with corresponding operating frequency bands. The UE may perform adaptive antenna tuning, for example, application-based antenna tuning for increasing the operating efficiency of the UE, which may improve user experience. The UE may periodically identify one or more applications running on the UE, the respective RATs that support the (running) applications, and which of the corresponding frequency bands are used by the (running) applications. The UE may determine the tuner device settings for tuning the one or more antenna(s) based on the (running) applications or the type and/or priority of the (running) applications, which RATs support the running applications, which of the corresponding frequency bands are used by the (running) applications, and operating conditions associated with the frequency bands used by the (running) applications.
Abstract:
A wireless communication device (UE) may conduct wireless communications using one or more antennas according to multiple radio access technologies (RAT) associated with corresponding operating frequency bands. The UE may perform adaptive antenna tuning, for example, application-based antenna tuning for increasing the operating efficiency of the UE, which may improve user experience. The UE may periodically identify one or more applications running on the UE, the respective RATs that support the (running) applications, and which of the corresponding frequency bands are used by the (running) applications. The UE may determine the tuner device settings for tuning the one or more antenna(s) based on the (running) applications or the type and/or priority of the (running) applications, which RATs support the running applications, which of the corresponding frequency bands are used by the (running) applications, and operating conditions associated with the frequency bands used by the (running) applications.
Abstract:
Systems and method to improve performance of a radio frequency system while operating in compliance with wireless transmission regulations are provided. One embodiment describes a radio frequency system including an antenna that wirelessly transmits an analog electrical signal at a transmission frequency and receives a first network signaling value from a wireless network. The radio frequency system further includes a controller that determines operational constraints on the radio frequency system based on a region of operation; determines a second network signaling value based on the operational constraints, in which the second network signaling value overrides the first network signaling value; determines operational parameters based on the second network signaling value; and instructs the radio frequency system to implement the operational parameters to facilitate the radio frequency system operating in compliance with the operational constraints.
Abstract:
The disclosed embodiments provide a system that uses a first antenna and a second antenna in a portable electronic device. During operation, the system receives a request to switch from the first antenna to the second antenna to transmit a signal to a cellular receiver. Next, the system loads a set of radio-frequency (RF) calibration values for the second antenna. Finally, the system performs the switch from the first antenna to the second antenna to transmit the signal, wherein the second antenna is operated using the RF calibration values after the switch.
Abstract:
The disclosed embodiments provide a system that uses a first antenna and a second antenna in a portable electronic device. During operation, the system receives a request to switch from the first antenna to the second antenna to transmit a signal to a cellular receiver. Next, the system loads a set of radio-frequency (RF) calibration values for the second antenna. Finally, the system performs the switch from the first antenna to the second antenna to transmit the signal, wherein the second antenna is operated using the RF calibration values after the switch.