Abstract:
A touch screen having layers. The touch screen can include a substrate upon which the layers of the touch screen are disposed, and a touch region including a touch pixel electrode, a first display sub-pixel and a second display sub-pixel. The touch screen can also include a sense connection coupled to touch sensing circuitry. An intermediate connection can be disposed between the touch pixel electrode and the sense connection, and can be coupled to the sense connection at the first display sub-pixel and the touch pixel electrode at the second display sub-pixel. In some examples, the sense connection can be disposed at least partially underneath a structure in the first display sub-pixel, such as a data line. In some examples, the intermediate connection can be comprised of a same material type as a structure in the first display sub-pixel, such as a gate line material.
Abstract:
Display backplanes and pixel element structures are described. In an embodiment, a pixel electrode is located between two stacked data lines, with a left edge of the pixel electrode being separated from a first lower data line by approximately a same distance as a right edge of the pixel electrode is separated from a second lower data line.
Abstract:
A display may have a liquid crystal layer sandwiched between a thin-film transistor layer and a color filter layer. An upper polarizer may be placed on top of the thin-film transistor layer. A lower polarizer may be placed under the color filter layer. Components may be bonded to bond pads on the inner surface of the thin-film transistor layer using anisotropic conductive film. Bond quality may be assessed by probing probe pads that are coupled to the bond pads or by visually inspecting the bond pads through the thin-film transistor layer. Opaque masking material in the inactive area may be provided with openings to accommodate the bond pads. Additional opaque masking material may be placed on the underside of the upper polarizer and on the upper surface of the thin-film transistor layer to block the openings from view following visual inspection.
Abstract:
A display may have a liquid crystal layer sandwiched between a thin-film transistor layer and a color filter layer. An upper polarizer may be placed on top of the thin-film transistor layer. A lower polarizer may be placed under the color filter layer. Components may be bonded to bond pads on the inner surface of the thin-film transistor layer using anisotropic conductive film. Bond quality may be assessed by probing probe pads that are coupled to the bond pads or by visually inspecting the bond pads through the thin-film transistor layer. Opaque masking material in the inactive area may be provided with openings to accommodate the bond pads. Additional opaque masking material may be placed on the underside of the upper polarizer and on the upper surface of the thin-film transistor layer to block the openings from view following visual inspection.
Abstract:
A liquid crystal display having an outer layer such as a thin-film transistor layer and an inner layer such as a color filter layer may be mounted in a metal device housing. Transparent conductive coating material may be formed on display layers. The transparent conductive coating material may include a layer on the upper surface of the thin-film transistor layer, a layer on the lower surface of the color filter layer, and an edge coating that extends between the upper surface layer and lower surface layer. Electrostatic discharge protection structures for the display may include a conductive elastomeric gasket that couples the upper surface layer to an inner surface of the housing, a conductive tape that couples the lower surface layer to the inner surface, and a conductive material on the inner surface that contacts the edge coating.
Abstract:
A liquid crystal display may have a thin-film transistor layer with an array of pixel electrode structures for applying electric fields to a liquid crystal layer. The liquid crystal display may also have a color filter layer with an array of color filter elements. The color filter elements may allow the display to display color images. The color filter layer may be interposed between the thin-film transistor layer and a backlight. The liquid crystal layer may be sandwiched between the thin-film transistor layer and the color filter layer. The color filter layer may have a transparent substrate on which the color filter elements are formed. Black masking structures may be formed on a transparent overcoat layer that covers the color filter elements. Black column spacers may be formed from the same layer of material that forms the black masking structures.
Abstract:
Display backplanes and pixel element structures are described. In an embodiment, a pixel electrode is located between two stacked data lines, with a left edge of the pixel electrode being separated from a first lower data line by approximately a same distance as a right edge of the pixel electrode is separated from a second lower data line.
Abstract:
A liquid crystal display having an outer layer such as a thin-film transistor layer and an inner layer such as a color filter layer may be mounted in a metal device housing. Transparent conductive coating material may be formed on display layers. The transparent conductive coating material may include a layer on the upper surface of the thin-film transistor layer, a layer on the lower surface of the color filter layer, and an edge coating that extends between the upper surface layer and lower surface layer. Electrostatic discharge protection structures for the display may include a conductive elastomeric gasket that couples the upper surface layer to an inner surface of the housing, a conductive tape that couples the lower surface layer to the inner surface, and a conductive material on the inner surface that contacts the edge coating.
Abstract:
A liquid crystal display may have a thin-film transistor layer with an array of pixel electrode structures for applying electric fields to a liquid crystal layer. The liquid crystal display may also have a color filter layer with an array of color filter elements. The color filter elements may allow the display to display color images. The color filter layer may be interposed between the thin-film transistor layer and a backlight. The liquid crystal layer may be sandwiched between the thin-film transistor layer and the color filter layer. The color filter layer may have a transparent substrate on which the color filter elements are formed. Black masking structures may be formed on a transparent overcoat layer that covers the color filter elements. Black column spacers may be formed from the same layer of material that forms the black masking structures.