Abstract:
An optical ready substrate made at least in part of a first semiconductor material and having a front side and a backside, the front side having a top surface that is of sufficient quality to permit microelectronic circuitry to be fabricated thereon using semiconductor fabrication processing techniques. The optical ready substrate includes an optical signal distribution circuit fabricated on the front side of the substrate in a first layer region beneath the top surface of the substrate. The optical signal distribution circuit is made up of interconnected semiconductor photonic elements and designed to provide signals to the microelectronic circuitry to be fabricated thereon.
Abstract:
An article of manufacture comprising an optical-ready substrate made of a first semiconductor layer, an insulating layer on top of the first semiconductor layer, and a second semiconductor layer on top of the insulating layer, wherein the second semiconductor layer has a top surface and is laterally divided into two regions including a first region and a second region, the top surface of the first region being of a quality that is sufficient to permit microelectronic circuitry to be formed therein and the second region including an optical signal distribution circuit formed therein, the optical signal distribution circuit made up of interconnected semiconductor photonic elements and designed to provide signals to the microelectronic circuit to be fabricated in the first region of the second semiconductor layer.
Abstract:
An article of manufacture comprising an optical ready substrate made of a first semiconductor layer, an insulating layer on top of the first semiconductor layer, and a second semiconductor layer on top of the insulating layer, wherein the second semiconductor layer has a top surface and is laterally divided into two regions including a first region and a second region, the top surface of the first region being of a quality that is sufficient to permit microelectronic circuitry to be formed therein and the second region including an optical signal distribution circuit formed therein, the optical signal distribution circuit made up of interconnected semiconductor photonic elements and designed to provide signals to the microelectronic circuit to be fabricated in the first region of the second semiconductor layer.
Abstract:
A dual damascene technique that forms a complete via in a single step. Specifically, the method deposits a first insulator layer upon a substrate, an etch stop layer over the first insulator layer, and a second insulator layer atop the etch stop layer. A via mask is then formed by applying a photoresist which is developed and patterned according to the locations of the dimensions of the ultimate via or vias. Thereafter, the first insulator layer, the etch stop layer and the second insulator layer may be etched in a single step, for example, using a reactive ion etch. The hole that is formed through these three layers has the diameter of the ultimate via. Thereafter, a trench is masked and etched into the second insulator layer. The trench etch is stopped by the etch stop layer. The via and trench are metallized to form an interconnect structure. The technique can be repeated to create a multi-level interconnect structure.